1.单选题- (共10题)
2.
我国古代在珠算发明之前多是用算筹为工具来记数、列式和计算的.算筹实际上是一根根相同长度的小木棍,如图,算筹表示数1~9的方法有两种,即“纵式”和“横式”,规定个位数用纵式,十位数用横式,百位数用纵式,千位数用横式,万位数用纵式……依此类推,交替使用纵横两式.例如:27可以表示为“
”.如果用算筹表示一个不含“0”的两位数,现有7根小木棍,能表示多少个不同的两位数( )



A.54 | B.57 | C.65 | D.69 |
5.
已知f(x)是定义域为R的奇函数,且f(x)=﹣f(x+2),当x∈(0,2)时,f(x)=2x﹣x2,则f(﹣1),f(
),f(π)的大小关系是( )

A.f(![]() | B.f(![]() |
C.f(﹣1)<f(π)<f(![]() | D.f(﹣1)<f(![]() |
9.
如图,在三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC.若PA=AB=BC=2,E,F分别是PB,PC的中点,则三棱锥P﹣AEF的外接球的表面积为( )


A.3π | B.5π | C.6π | D.6![]() |
10.
清远市教育教学研究院想了解清远市某所中学的学生是否赞成该学校的某个新政策,由于条件限制,教学研究院不能询问每位学生的意见,所以需要选择一个合适的样本.最好的方法是询问( )
A.由该学校推选的学生 |
B.在课间遇见的学生 |
C.在图书馆学习的学生 |
D.从学校名单中随机选取的学生 |
2.填空题- (共4题)
3.解答题- (共5题)
16.
如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=45°,PD⊥平面ABCD,AP⊥BD.

(1)证明:BC⊥平面PDB,
(2)若AB
,PB与平面APD所成角为45°,求点B到平面APC的距离.

(1)证明:BC⊥平面PDB,
(2)若AB

18.
广东省的生产总值已经连续30年位居全国第一位,如表是广东省从2012年至2018年7年的生产总值以人民币(单位:万亿元)计算的数据:
(1)从表中数据可认为x和y的线性相关性较强,求出以x为解释变量、y为预报变量的线性回归方程(系数精确到0.01);
(2)广东省2018年人口约为1.13亿,德国2018年人口约为0.83亿.从人口数量比较看,广东省比德国人口多,但德国2018年的生产总值为4.00万亿美元,以(1)的结论为依据,预测广东省在哪年的生产总值能超过德国在2018年的生产总值?
参考数据:
yi=52.81,
xiyi=230.05,
yi2=411.2153,
xi2=140.
货币兑换:1美元≈7.03元人民币
参考公式:回归方程
x
中斜率
和截距
的最小二乘估计公式分别为:
,
.
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
广东省生产总值y(单位:万亿元) | 5.71 | 6.25 | 6.78 | 7.28 | 8.09 | 8.97 | 9.73 |
(1)从表中数据可认为x和y的线性相关性较强,求出以x为解释变量、y为预报变量的线性回归方程(系数精确到0.01);
(2)广东省2018年人口约为1.13亿,德国2018年人口约为0.83亿.从人口数量比较看,广东省比德国人口多,但德国2018年的生产总值为4.00万亿美元,以(1)的结论为依据,预测广东省在哪年的生产总值能超过德国在2018年的生产总值?
参考数据:




货币兑换:1美元≈7.03元人民币
参考公式:回归方程






试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19