1.单选题- (共11题)
5.
已知变量x,y之间的线性回归方程为
,且变量x,y之间的一组相关数据如表所示,则下列说法错误的是( )

x | 6 | 8 | 10 | 12 |
y | 6 | m | 3 | 2 |
A.变量x,y之间呈现负相关关系 |
B.可以预测,当x=20时,y=﹣3.7 |
C.m=4 |
D.该回归直线必过点(9,4) |
9.
在等差数列{an}中,其公差d≠0,若S7=S12,现有以下四个命题:
①S19=0;②S10=S9;③若d>0,则Sn有最大值;④若d>0,则Sn有最小值.
则关于这四个命题,正确的是( )
①S19=0;②S10=S9;③若d>0,则Sn有最大值;④若d>0,则Sn有最小值.
则关于这四个命题,正确的是( )
A.①②③ | B.①②④ | C.①④ | D.②③. |
2.填空题- (共3题)
3.解答题- (共5题)
15.
已知中心在原点的双曲线C的渐近线方程为y=±2x,且该双曲线过点(2,2).
(1)求双曲线C的标准方程;
(2)点A为双曲线C上任一点,F1、F2分别为双曲线的左、右焦点,过其中的一个焦点作∠F1AF2的角平分线的垂线,垂足为点P,求点P的轨迹方程.
(1)求双曲线C的标准方程;
(2)点A为双曲线C上任一点,F1、F2分别为双曲线的左、右焦点,过其中的一个焦点作∠F1AF2的角平分线的垂线,垂足为点P,求点P的轨迹方程.
17.
现有甲、乙、丙、丁四个人相互之间传球,从甲开始传球,甲等可能地把球传给乙、丙、丁中的任何一个人,依此类推.
(1)通过三次传球后,球经过乙的次数为ξ,求ξ的分布列和期望;
(2)设经过n次传球后,球落在甲手上的概率为an,
(i)求a1,a2,an;
(ii)探究:随着传球的次数足够多,球落在甲、乙、丙、丁每个人手上的概率是否相等,并简单说明理由.
(1)通过三次传球后,球经过乙的次数为ξ,求ξ的分布列和期望;
(2)设经过n次传球后,球落在甲手上的概率为an,
(i)求a1,a2,an;
(ii)探究:随着传球的次数足够多,球落在甲、乙、丙、丁每个人手上的概率是否相等,并简单说明理由.
试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19