1.单选题- (共4题)
3.
某班有34位同学,座位号记为01,02, 34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )


A.23 | B.09 | C.02 | D.16 |
2.填空题- (共4题)
3.解答题- (共7题)
12.
(本小题满分13分)如图1,直角梯形
中,
,
,
.
交
于点
,点
,
分别在线段
,
上,且
.将图1中的
沿
翻折,使平面
⊥平面
(如图2所示),连结
、
,
、
.

(Ⅰ)求证:平面
平面
;
(Ⅱ)当三棱锥
的体积最大时,求直线
与平面
所成角的正弦值.





















(Ⅰ)求证:平面


(Ⅱ)当三棱锥



13.
(本小题满分13分)已知动圆
过定点
且与
轴截得的弦
的长为
.
(Ⅰ)求动圆圆心
的轨迹
的方程;
(Ⅱ)已知点
,动直线
和坐标轴不垂直,且与轨迹
相交于
两点,试问:在
轴上是否存在一定点
,使直线
过点
,且使得直线
,
,
的斜率依次成等差数列?若存在,请求出定点
的坐标;否则,请说明理由.





(Ⅰ)求动圆圆心


(Ⅱ)已知点












14.
(本小题满分13分)甲、乙、丙三人参加某次招聘会,若甲应聘成功的概率为
,乙、丙应聘成功的概率均为
,且三人是否应聘成功是相互独立的.
(Ⅰ)若甲、乙、丙都应聘成功的概率是
,求
的值;
(Ⅱ)在(Ⅰ)的条件下,设
表示甲、乙两人中被聘用的人数,求
的数学期望.


(Ⅰ)若甲、乙、丙都应聘成功的概率是


(Ⅱ)在(Ⅰ)的条件下,设


试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(4道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:15