1.单选题- (共3题)
2.
如图,在△PAB中,∠A=∠B,D、E、F分别是边PA、PB、AB上的点,且AD=BF,BE=AF.若∠DFE=34°,则∠P的度数为( )


A.112° | B.120° | C.146° | D.150° |
2.选择题- (共2题)
3.填空题- (共4题)
6.
如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是_______________(填序号).

①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.

①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.
4.解答题- (共7题)
11.
如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.

供选择的三个条件(请从其中选择一个):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.

供选择的三个条件(请从其中选择一个):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.
13.
如图所示.在△ABC中,∠ACB=90°,AC=BC,过点C任作一直线PQ,过点A作
于点M,过点B作BN
PQ于点N.

(1)如图①,当M、N在△ABC的外部时,MN、AM、BN有什么关系呢?为什么?
(2)如图②,当M、N在△ABC的内部时,(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请指出MN与AM、BN之间的数关系并说明理由.



(1)如图①,当M、N在△ABC的外部时,MN、AM、BN有什么关系呢?为什么?
(2)如图②,当M、N在△ABC的内部时,(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请指出MN与AM、BN之间的数关系并说明理由.
15.
学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.

(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:
(2)如图②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;
(3)如图③,若△ABC中,∠ABO=
∠ABC,∠ACO=
∠ACB,且BO、CO相交于点O,请直接写出∠BOC与∠A的关系式为 _.

(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:
(2)如图②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;
(3)如图③,若△ABC中,∠ABO=


试卷分析
-
【1】题量占比
单选题:(3道)
选择题:(2道)
填空题:(4道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:14