1.单选题- (共7题)
2.选择题- (共2题)
3.填空题- (共4题)
11.
设
是由一平面内的
个向量组成的集合.若
,且
的模不小于
中除
外的所有向量和的模.则称
是
的极大向量.有下列命题:
①若
中每个向量的方向都相同,则
中必存在一个极大向量;
②给定平面内两个不共线向量
,在该平面内总存在唯一的平面向量
,使得
中的每个元素都是极大向量;
③若
中的每个元素都是极大向量,且
中无公共元素,则
中的每一个元素也都是极大向量.
其中真命题的序号是_______________ .








①若


②给定平面内两个不共线向量



③若



其中真命题的序号是
12.
如图所示:正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树形图形,称为“勾股树”.若某勾股树含有
个正方形,且其最大的正方形的边长为
,则其最小正方形的边长为________.



4.解答题- (共6题)
16.
对于项数为
(
)的有穷正整数数列
,记
(
),即
为
中的最大值,称数列
为数列
的“创新数列”.比如
的“创新数列”为
.
(1)若数列
的“创新数列”
为1,2,3,4,4,写出所有可能的数列
;
(2)设数列
为数列
的“创新数列”,满足
(
),求证:
(
);
(3)设数列
为数列
的“创新数列”,数列
中的项互不相等且所有项的和等于所有项的积,求出所有的数列
.











(1)若数列



(2)设数列






(3)设数列




试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(2道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17