1.单选题- (共10题)
6.
在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边
直接求三角形的面积,据说这个问题最早是由古希腊数学家阿基米德解决的,他得到了海伦公式即
,其中
.我国南宋著名数学家秦九韶(约1202-1261)也在《数书九章》里面给出了一个等价解法,这个解法写成公式就是
,这个公式中的
应该是( )





A.![]() |
B.![]() |
C.![]() |
D.![]() |
9.
相关变量
的散点图如图所示,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程
,相关系数为
;方案二:剔除点
,根据剩下数据得到线性回归直线方程:
,相关系数为
.则( )








A.![]() |
B.![]() |
C.![]() |
D.![]() |
2.填空题- (共4题)
3.解答题- (共5题)
16.
如图,点
分别是圆心在原点,半径为
和
的圆上的动点.动点
从初始位置
开始,按逆时针方向以角速度
作圆周运动,同时点
从初始位置
开始,按顺时针方向以角速度
作圆周运动.记
时刻,点
的纵坐标分别为
.

(Ⅰ)求
时刻,
两点间的距离;
(Ⅱ)求
关于时间
的函数关系式,并求当
时,这个函数的值域.













(Ⅰ)求


(Ⅱ)求



18.
已知椭圆
的左右焦点分别为
,点
是椭圆
上的一个动点,当直线
的斜率等于
时,
轴.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
且斜率为
的直线
与直线
相交于点
,试判断以
为直径的圆是否过
轴上的定点?若是,求出定点坐标;若不是,说明理由.







(Ⅰ)求椭圆

(Ⅱ)过点







19.
某公司生产某种产品,一条流水线年产量为
件,该生产线分为两段,流水线第一段生产的半成品的质量指标会影响第二段生产成品的等级,具体见下表:
从第一道生产工序抽样调查了
件,得到频率分布直方图如图:

若生产一件一等品、二等品、三等品的利润分别是
元、
元、
元.
(Ⅰ)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;
(Ⅱ)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;
(Ⅲ)现在市面上有一种设备可以安装到流水线第一段,价格是
万元,使用寿命是
年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布
,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.
(参考数据:
,
,
)

第一段生产的半成品质量指标![]() | ![]() ![]() | ![]() ![]() | ![]() |
第二段生产的成品为一等品概率 | 0.2 | 0.4 | 0.6 |
第二段生产的成品为二等品概率 | 0.3 | 0.3 | 0.3 |
第二段生产的成品为三等品概率 | 0.5 | 0.3 | 0.1 |
从第一道生产工序抽样调查了


若生产一件一等品、二等品、三等品的利润分别是



(Ⅰ)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;
(Ⅱ)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;
(Ⅲ)现在市面上有一种设备可以安装到流水线第一段,价格是



(参考数据:



试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19