1.单选题- (共4题)
1.
如图,在R△ABC中,∠ACB=90°,AC=6,BC=8,E为AC上一点,且AE=
,AD平分∠BAC交BC于D.若P是AD上的动点,则PC+PE的最小值等于( )



A.![]() | B.![]() | C.4 | D.![]() |
3.
如图,平面直角坐标系中,长方形OABC,点A,C分别在x轴,y轴的正半轴上,点B(6,3),现将△OAB沿OB翻折至△OA′B位置,OA′交BC于点P.则点P的坐标为( )


A.(![]() | B.(![]() | C.(![]() | D.(![]() |
4.
工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB的两边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB的平分线画法中用到三角形全等的判定方法是( )


A.SSS | B.SAS | C.ASA | D.HL |
2.填空题- (共3题)
6.
如图,平面直角坐标系中,长方形OABC,点A,C分别在y轴,x轴的正半轴上,OA=6,OC=3.∠DOE=45°,OD,OE分别交BC,AB于点D,E,且CD=2,则点E坐标为_____.

3.解答题- (共6题)
8.
已知一次函数y=(1﹣2m)x+m+1及坐标平面内一点P(2,0);
(1)若一次函数图象经过点P(2,0),求m的值;
(2)若一次函数的图象经过第一、二、三象限;
①求m的取值范围;
②若点M(a﹣1,y1),N(a,y2),在该一次函数的图象上,则y1 y2(填“>”、”=”、”<”).
(1)若一次函数图象经过点P(2,0),求m的值;
(2)若一次函数的图象经过第一、二、三象限;
①求m的取值范围;
②若点M(a﹣1,y1),N(a,y2),在该一次函数的图象上,则y1 y2(填“>”、”=”、”<”).
9.
如图,平面直角坐标系中,直线AB:y=kx+3(k≠0)交x轴于点A(4,0),交y轴正半轴于点B,过点C(0,2)作y轴的垂线CD交AB于点E,点P从E出发,沿着射线ED向右运动,设PE=n.

(1)求直线AB的表达式;
(2)当△ABP为等腰三角形时,求n的值;
(3)若以点P为直角顶点,PB为直角边在直线CD的上方作等腰Rt△BPM,试问随着点P的运动,点M是否也在直线上运动?如果在直线上运动,求出该直线的解析式;如果不在直线上运动,请说明理由.

(1)求直线AB的表达式;
(2)当△ABP为等腰三角形时,求n的值;
(3)若以点P为直角顶点,PB为直角边在直线CD的上方作等腰Rt△BPM,试问随着点P的运动,点M是否也在直线上运动?如果在直线上运动,求出该直线的解析式;如果不在直线上运动,请说明理由.
10.
已知甲,乙两名自行车骑手均从P地出发,骑车前往距P地60千米的Q地,当乙骑手出发了1.5小时,此时甲,乙两名骑手相距6千米,因甲骑手接到紧急任务,故甲到达Q地后立即又原路返回P地甲,乙两名骑手距P地的路程y(千米)与时间x(时)的函数图象如图所示.(其中折线O﹣A﹣B﹣C﹣D(实线)表示甲,折线O﹣E﹣F﹣G(虚线)表示乙)

(1)甲骑手在路上停留 小时,甲从Q地返回P地时的骑车速度为 千米/时;
(2)求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;
(3)在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.

(1)甲骑手在路上停留 小时,甲从Q地返回P地时的骑车速度为 千米/时;
(2)求乙从P地到Q地骑车过程中(即线段EF)距P地的路程y(千米)与时间x(时)的函数关系式及自变量x的取值范围;
(3)在乙骑手出发后,且在甲,乙两人相遇前,求时间x(时)的值为多少时,甲,乙两骑手相距8千米.
11.
如图,已知直线l1:y1=x+b经过点A(﹣5,0),交y轴于点B,直线l2:y2=﹣2x﹣4与直线l1:y1=x+b交于点C,交y轴于点D.

(1)求b的值;
(2)求△BCD的面积;
(3)当0≤y2<y1时,则x的取值范围是 .(直接写出结果)

(1)求b的值;
(2)求△BCD的面积;
(3)当0≤y2<y1时,则x的取值范围是 .(直接写出结果)
试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:13