1.单选题- (共12题)
3.
设f(x)是定义在(﹣∞,+∞)上的单调递减函数,且f(x)为奇函数.若f(1)=﹣1,则不等式﹣1≤f(x﹣2)≤1的解集为( )
A.[﹣1,1] | B.[0,4] | C.[﹣2,2] | D.[1,3] |
8.
在函数y=cosx,x∈[-
,
]的图象上有一点P(t,cost),若该函数的图象与x轴、直线x=t,围成图形(如图阴影部分)的面积为S,则函数S=g(t)的图象大致是( )




A.![]() | B.![]() | C.![]() | D.![]() |
10.
在△ABC中,a,b,c为角A,B,C的对边,且cos2C+cosC+cos(A﹣B)=1,则( )
A.a,b,c成等差数列 | B.a,c,b成等差数列 |
C.a,c,b成等比数列 | D.a,b,c成等比数列 |
12.
由①安梦怡是高三(2)班的学生,②安梦怡是独生子女,③高三(2)班的学生都是独生子女.写一个“三段论”形式的推理,则大前提、小前提和结论分别为( )
A.②①③ | B.③①② |
C.①②③ | D.②③① |
2.填空题- (共4题)
14.
当x∈R,|x|<1时,有如下表达式:1+x+x2+•••+xn+•••=
两边同时积分得:
从而得到如下等式:
请根据以上材料所蕴含的数学思想方法,
由二项式定理Cn0+Cn1x+Cn2x2+•••+Cnnxn=(1+x)n计算:
__________

两边同时积分得:

从而得到如下等式:

请根据以上材料所蕴含的数学思想方法,
由二项式定理Cn0+Cn1x+Cn2x2+•••+Cnnxn=(1+x)n计算:

3.解答题- (共5题)
17.
已知f(x)为二次函数,且f(x+1)+f(x﹣1)=2x2﹣4x,
(1)求f(x)的解析式;
(2)设g(x)=f(2x)﹣m•2x+1,其中x∈[0,1],m为常数且m∈R,求函数g(x)的最小值.
(1)求f(x)的解析式;
(2)设g(x)=f(2x)﹣m•2x+1,其中x∈[0,1],m为常数且m∈R,求函数g(x)的最小值.
试卷分析
-
【1】题量占比
单选题:(12道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21