1.单选题- (共11题)
6.
已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有( )种
A.19 | B.26 | C.7 | D.12 |
2.填空题- (共4题)
13.
对于三次函数
,定义:设
是函数
的导数
的导数,若方程
有实数解
,则称点
为函数
的“拐点”,有同学发现“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”根据此发现,若函数
,计算
__________.










15.
某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表
经计算
的值,则有__________
的把握认为玩手机对学习有影响.
附:
,
.
| 玩手机 | 不玩手机 | 合计 |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
合计 | 20 | 10 | 30 |
经计算


附:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |


3.解答题- (共5题)
18.
如图(1)是一个仿古的首饰盒,其左视图是由一个半径为
分米的半圆和矩形
组成,其中
长为
分米,如图(2).为了美观,要求
.已知该首饰盒的长为
分米,容积为4立方分米(不计厚度),假设该首饰盒的制作费用只与其表面积有关,下半部分的制作费用为每平方分米2百元,上半部制作费用为每平方分米4百元,设该首饰盒的制作费用为
百元.

(1)写出
关于
的函数解析式;
(2)当
为何值时,该首饰盒的制作费用最低?








(1)写出


(2)当

19.
在平面直角坐标系
中,直线
的参数方程为
(
为参数,
),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求直线
的普通方程与曲线
的直角坐标方程;
(2)若直线
与曲线
交于
、
两点,求
的最小值.









(1)求直线


(2)若直线





20.
某校倡导为特困学生募捐,要求在自动购水机处每购买一箱矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21~50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.
(1)若售出水量箱数
与
成线性相关,则某天售出9箱水时,预计收入为多少元?
(2)甲乙两名学生获一等奖学金的概率均为
,获二等奖学金的概率均为
,不获得奖学金的概率均为
,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和
的分布列及数学期望.
附:回归直线方程
,其中
,
.
售出水量![]() | 7 | 6 | 6 | 5 | 6 |
收入![]() | 165 | 142 | 148 | 125 | 150 |
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21~50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.
(1)若售出水量箱数


(2)甲乙两名学生获一等奖学金的概率均为




附:回归直线方程



试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20