刷题首页
题库
高中数学
题干
如图(1)是一个仿古的首饰盒,其左视图是由一个半径为
分米的半圆和矩形
组成,其中
长为
分米,如图(2).为了美观,要求
.已知该首饰盒的长为
分米,容积为4立方分米(不计厚度),假设该首饰盒的制作费用只与其表面积有关,下半部分的制作费用为每平方分米2百元,上半部制作费用为每平方分米4百元,设该首饰盒的制作费用为
百元.
(1)写出
关于
的函数解析式;
(2)当
为何值时,该首饰盒的制作费用最低?
上一题
下一题
0.99难度 解答题 更新时间:2018-07-25 11:37:35
答案(点此获取答案解析)
同类题1
现需建造一个容积为V的圆柱形铁桶,它的盖子用铝合金材料,已知单位面积的铝合金的价格是铁的3倍。要使该容器的造价最低,则铁桶的底面半径r与高h的比值为_______
同类题2
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用
C
(单位:万元)与隔热层厚度
x
(单位:cm)满足关系
C
(
x
)=
(0≤
x
≤10),若不建隔热层,每年能源消耗费用为8万元,设
f
(
x
)为隔热层建造费用与20年的能源消耗费用之和.
(1)求
k
的值及
f
(
x
)的表达式;
(2)隔热层修建多厚时,总费用
f
(
x
)达到最小,并求最小值.
同类题3
某城市为配合国家“一带一路”战略,发展城市旅游经济,拟在景观河道的两侧,沿河岸直线
与
修建景观(桥),如图所示,河道为东西方向,现要在矩形区域
内沿直线将
与
接通.已知
,
,河道两侧的景观道路修复费用为每米
万元,架设在河道上方的景观桥
部分的修建费用为每米
万元.
(1)若景观桥长
时,求桥与河道所成角的大小;
(2)如何景观桥
的位置,使矩形区域
内的总修建费用最低?最低总造价是多少?
同类题4
某市有一特色酒店由一些完全相同的帐篷构成.每座帐篷的体积为
立方米,且分上下两层,其中上层是半径为
(单位:米)的半球体,下层是半径为
米,高为
米的圆柱体(如图).经测算,上层半球体部分每平方米建造费用为2千元,下方圆柱体的侧面、隔层和地面三个部分平均每平方米建造费用为3千元,设每座帐篷的建造费用为
千元.
参考公式:球的体积
,球的表面积
,其中
为球的半径.
(1)求
关于
的函数解析式,并指出该函数的定义域;
(2)当半径
为何值时,每座帐篷的建造费用最小,并求出最小值.
同类题5
某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用w与其航行速度x的平方成正比(即:w=kx
2
,其中k为比例系数);当航行速度为30海里/小时时,每小时的燃料费用为450元,其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.
(1)请将从甲地到乙地的运输成本y(元)表示为航行速度x(海里/小时)的函数;
(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
成本最小问题