1.单选题- (共10题)
2.
函数f(x),g(x)都是定义域为R的奇函数,若f(-1)+g(-2)=-3,f(-1)-g(-2)=1,则( )
A.f(1)=1,g(2)=-2 | B.f(1)=-2,g(2)=1 |
C.f(1)=1,g(2)=2 | D.f(1)=2,g(2)=1 |
8.
已知双曲线E:
(a>0,b>0)的渐近线方程为3x±4y=0,且过焦点垂直x轴的直线与双曲线E相交弦长为
,过双曲线E中心的直线与双曲线E交于A,B两点,在双曲线E上取一点C(与A,B不重合),直线AC,BC 的斜率分别为k1,k2,则k1k2等于( )


A.![]() | B.![]() | C.![]() | D.![]() |
9.
如图,正方形ABCD中,AC,BD交于点O,E,G是线段AC上的点,F,H是线段BD上的点,且AE=CG=
EG,BF=FH=DH,连接EF,FG,GH,EH,现往正方形ABCD中投掷1200个点,则可以估计,落在阴影区域内点的个数为( )



A.100 | B.200 | C.300 | D.400 |
10.
《九章算术》中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐. 齐去长安三千里. 良马初日行一百九十三里,日增一十三里;驽马初日行九十七里,日减半里.” 为了计算每天良马和驽马所走的路程之和,设计框图如下. 若输出的S的值为365,则判断框中可以填( )


A.i>4? | B.i>5? | C.i>6? | D.i>7? |
2.填空题- (共4题)
3.解答题- (共5题)
17.
[选修4-5:不等式选讲]
已知函数f(x)=2|x-2|+3|x+3|.
(Ⅰ)解不等式:f(x)>15;
(Ⅱ)若函数f(x)的最小值为m,正实数a,b满足4a+25b=m,求
+
的最小值,并求出此时a,b的大小.
已知函数f(x)=2|x-2|+3|x+3|.
(Ⅰ)解不等式:f(x)>15;
(Ⅱ)若函数f(x)的最小值为m,正实数a,b满足4a+25b=m,求


18.
如图所示的多面体中,底面ABCD为正方形,△GAD为等边三角形,BF⊥平面ABCD,∠GDC=90°,点E是线段GC上除两端点外的一点,若点P为线段GD的中点.
(Ⅰ)求证:AP⊥平面GCD;
(Ⅱ)求证:平面ADG∥平面FBC;
(Ⅲ)若AP∥平面BDE,求
的值.
(Ⅰ)求证:AP⊥平面GCD;
(Ⅱ)求证:平面ADG∥平面FBC;
(Ⅲ)若AP∥平面BDE,求


19.
近年来,随着双十一、双十二等网络活动的风靡,各大网商都想出了一系列的降价方案,以此来提高自己的产品利润. 已知在2016年双十一某网商的活动中,某店家采取了两种优惠方案以供选择:
方案一:购物满400元以上的,超出400元的部分只需支出超出部分的x%;
方案二:购物满400元以上的,可以参加电子抽奖活动,即从1,2,3,4,5,6这6张卡牌中任取2张,将得到的数字相加,所得结果与享受优惠如下:
(Ⅰ)若某顾客消费了800元,且选择方案二,求该顾客只需支付640元的概率;
(Ⅱ)若某顾客购物金额为500元,她选择了方案二后,得到的数字之和为6,此时她发现使用方案一、二最后支付的金额相同,求x的值.
近年来,随着双十一、双十二等网络活动的风靡,各大网商都想出了一系列的降价方案,以此来提高自己的产品利润. 已知在2016年双十一某网商的活动中,某店家采取了两种优惠方案以供选择:
方案一:购物满400元以上的,超出400元的部分只需支出超出部分的x%;
方案二:购物满400元以上的,可以参加电子抽奖活动,即从1,2,3,4,5,6这6张卡牌中任取2张,将得到的数字相加,所得结果与享受优惠如下:
数字和 | [3,4] | [5,7] | [8,9] | [10,11] |
实际付款 | 原价 | 9折 | 8折 | 5折 |
(Ⅰ)若某顾客消费了800元,且选择方案二,求该顾客只需支付640元的概率;
(Ⅱ)若某顾客购物金额为500元,她选择了方案二后,得到的数字之和为6,此时她发现使用方案一、二最后支付的金额相同,求x的值.
试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19