1.单选题- (共10题)
3.
已知函数f(x)为R上的奇函数,当x<0时,
,则xf(x)≥0的解集为( )

A.[﹣1,0)∪[1,+∞) | B.(﹣∞,﹣1]∪[1,+∞) |
C.[﹣1,0]∪[1,+∞) | D.(﹣∞,﹣1]∪{0}∪[1,+∞) |
6.
如图,△ABC和△DEF均为等边三角形,AF=BD=CE,DF=2AF=20 cm,若在△ABC中随机投入260粒芝麻,则落在△DEF外的芝麻粒数约为


A.100 |
B.130 |
C.150 |
D.180 |
2.填空题- (共3题)
13.
如图,在直四棱柱ABCD-A1B1C1D1中,已知四边形ABCD是直角梯形,∠BAD=90°,AB∥CD,AB=AD=AA1=1,CD=2,E为BB1的中点,则直线AD与直线CE所成角的正切值为____ .

3.解答题- (共5题)
15.
已知数列{an}的前n项和为Sn,a1=3,an+1=2Sn+3(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=log3an,若数列
的前n项和为Tn,证明:Tn<1.
(1)求数列{an}的通项公式;
(2)设bn=log3an,若数列

16.
如图,在五面体ABCDFE中,底面ABCD为矩形,EF∥AB,BC⊥FD,过BC的平面交棱FD于P,交棱FA于Q.

(1)证明:PQ∥平面ABCD;
(2)若CD⊥BE,EF=EC=1,
,求五面体ABCDFE的体积.

(1)证明:PQ∥平面ABCD;
(2)若CD⊥BE,EF=EC=1,

17.
已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4.
(1)求抛物线的方程;
(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点).
(1)求抛物线的方程;
(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点).
18.
2018年4月全国青少年足球超级联赛火爆开启,这是体育与教育的强强联手,这是培养足球运动员的黄金摇篮,也是全国青少年足球的盛宴.组委会在某场联赛结束后,随机抽取了300名观众进行对足球“喜爱度”的调查评分,将得到的分数分成6段:[64,70),[70,76),[76,82),[82,88),[88,94),[94,100]后得到如图所示的频率分布直方图.
(1)求a的值并估计这300名观众评分的中位数;
(2)若评分在“88分及以上”确定为“足球迷”,现从“足球迷”中按区间[88,94)与[94,100]两部分按分层抽样抽取5人,然后再从中任意选取两人作进一步的访谈,求这两人中至少有1人的评分在区间[94,100]的概率.
(1)求a的值并估计这300名观众评分的中位数;
(2)若评分在“88分及以上”确定为“足球迷”,现从“足球迷”中按区间[88,94)与[94,100]两部分按分层抽样抽取5人,然后再从中任意选取两人作进一步的访谈,求这两人中至少有1人的评分在区间[94,100]的概率.

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18