1.单选题- (共11题)
11.
有一段“三段论”推理是这样的:对于可导函数
,如果
,那么
是函数
的极值点.因为函数
在
处的导数值
,所以
是函数
的极值点.以上推理中()









A.小前提错误 | B.大前提错误 |
C.推理形式错误 | D.结论正确 |
2.填空题- (共4题)
14.
甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以
和
表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以
表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).
①
;
②
;
③事件
与事件
相互独立;
④
是两两互斥的事件;
⑤
的值不能确定,因为它与
中哪一个发生有关



①

②

③事件


④

⑤


15.
一同学在电脑中打出如下图形(○表示空心圆,●表示实心圆).
○●○○●○○○●○○○○…
若将此若干个圆依此规律继续下去,得到一系列的圆,那么前2019个圆中有________ 个实心圆.
○●○○●○○○●○○○○…
若将此若干个圆依此规律继续下去,得到一系列的圆,那么前2019个圆中有
3.解答题- (共6题)
19.
在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
作物产量(kg) | 300 | 500 |
概率 | 0.5 | 0.5 |
作物市场价格(元/kg) | 6 | 10 |
概率 | 0.4 | 0.6 |
(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.
20.
在某校组织的高二女子排球比赛中,有
、
两个球队进入决赛,决赛采用7局4胜制.假设
、
两队在每场比赛中获胜的概率都是
.并记需要比赛的场数为
.
(Ⅰ)求
大于4的概率;
(Ⅱ)求
的分布列与数学期望.






(Ⅰ)求

(Ⅱ)求

试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21