1.单选题- (共4题)
2.填空题- (共11题)
3.解答题- (共5题)
17.
对于函数
,如果存在实数
(
,且
不同时成立),使得
对
恒成立,则称函数
为“
映像函数”.
(1)判断函数
是否是“
映像函数”,如果是,请求出相应的
的值,若不是,请说明理由;
(2)已知函数
是定义在
上的“
映像函数”,且当
时,
.求函数
(
)的反函数;
(3)在(2)的条件下,试构造一个数列
,使得当
时,
,并求
时,函数
的解析式,及
的值域.








(1)判断函数



(2)已知函数







(3)在(2)的条件下,试构造一个数列






18.
某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童.此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益.据测算,首日参与活动人数为
人,以后每天人数比前一天都增加
,
天后捐步人数稳定在第
天的水平,假设此项活动的启动资金为
万元,每位捐步者每天可以使公司收益
元(以下人数精确到
人,收益精确到
元).
(1)求活动开始后第
天的捐步人数,及前
天公司的捐步总收益;
(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?








(1)求活动开始后第


(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?
试卷分析
-
【1】题量占比
单选题:(4道)
填空题:(11道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20