2016届上海市奉贤区高三4月调研测试(二模)(文)数学试题

适用年级:高三
试卷号:614567

试卷类型:二模
试卷考试时间:2020/2/8

1.单选题(共3题)

1.
下列不等式中,与不等式解集相同的是()
A.
B.
C.
D.
2.
平面的斜线与平面所成的角是,则与平面内所有不过斜足的直线所成的角的范围是(   )
A.B.C.D.
3.
若复数z满足关系对应的复平面的点Z的轨迹是( ).
A.圆B.椭圆C.双曲线D.直线

2.填空题(共12题)

4.
在△中,,且△的面积为,则=_______
5.
在平面直角坐标系中,将点绕原点逆时针旋转到点,若直线的倾斜角为,则的值为_______.
6.
若数列满足 ,且单调递增,则的取值范围是_______.
7.
无穷等比数列首项为,公比为的等比数列前项和为,则,则________.
8.
已知,集合,,如果,则的取值范围是_______.
9.
如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,如果直角三角形的直角边长都为1,那么这个几何体的表面积为_______.
10.
在一个水平放置的底面半径为cm的圆柱形量杯中装有适量的水,现放入一个半径为cm的实心铁球,球完全浸没于水中且无水溢出,若水面高度恰好上升cm,则___  ____cm.
11.
双曲线的一条渐近线与直线垂直,则________.
12.
已知抛物线上一点,则点到抛物线焦点的距离等于______________.
13.
展开式中常数项是_______.(用数值回答)
14.
从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有________种.
15.
是纯虚数,是虚数单位,则实数_______.

3.解答题(共4题)

16.
如图所示,是两个垃圾中转站,的正东方向千米处,的南面为居民生活区.为了妥善处理生活垃圾,政府决定在的北面建一个垃圾发电厂.垃圾发电厂的选址拟满足以下两个要求(可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点到直线的距离要尽可能大).现估测得两个中转站每天集中的生活垃圾量分别约为吨和吨.设

(1)求(用的表达式表示);
(2)垃圾发电厂该如何选址才能同时满足上述要求?
17.
数列满足.
(1)求证:是常数列;
(2)若是递减数列,求的关系;
(3)设,当时,求的取值范围.
18.
平面外的一点两两互相垂直,过的中点,且,连,多面体的体积是

(1)画出面与面的交线,说明理由;
(2)求与面所成的线面角的大小.
19.
已知椭圆的长轴长是短轴长的两倍,焦距为

(1)求椭圆的标准方程;
(2)设是四条直线所围成的两个顶点,是椭圆上的任意一点,若,求证:动点在定圆上运动.
试卷分析
  • 【1】题量占比

    单选题:(3道)

    填空题:(12道)

    解答题:(4道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:19