1.单选题- (共12题)
5.
一个正四棱柱的各个顶点都在一个半径为1cm的球面上,如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为( )
A.(2+4![]() | B.(4+2![]() | C.(4+4![]() | D.(2+8![]() |
9.
已知圆C:[x﹣(a﹣2)]2+(y﹣
a)2=16,定直线l经过点A(2,0),若对任意的实数a,定直线l被圆C截得的弦长始终为定值d,则圆心C到直线l的距离等于( )

A.8 | B.4![]() | C.4 | D.2![]() |
10.
已知一组数据3,4,5,a,b的平均数是4,中位数是m,从3,4,5,a,b,m这组数据中任取一数,取到数字4的概率为
,那么3,4,5,a,b这组数据的方差为( )

A.![]() | B.2 | C.![]() | D.![]() |
12.
为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为( )
A.64 | B.96 | C.144 | D.160 |
2.选择题- (共5题)
3.填空题- (共4题)
19.
如图,透明塑料制成的长方体ABCD﹣A1B1C1D1内灌进一些水,固定容器底面一边BC于水平地面上,再将容器倾斜,随着倾斜度不同,有下面五个命题:
①有水的部分始终呈棱柱形;
②没有水的部分始终呈棱柱形;
③水面EFGH所在四边形的面积为定值;
④棱A1D1始终与水面所在平面平行;
⑤当容器倾斜如图(3)所示时,BE•BF是定值.
其中所有正确命题的序号是 ____.
①有水的部分始终呈棱柱形;
②没有水的部分始终呈棱柱形;
③水面EFGH所在四边形的面积为定值;
④棱A1D1始终与水面所在平面平行;
⑤当容器倾斜如图(3)所示时,BE•BF是定值.
其中所有正确命题的序号是 ____.

4.解答题- (共6题)
23.
如图是一个简单的几何体的三视图.
(1)画出该几何体的直观图;
(2)求此几何体的表面积S与体积V;
(3)对任意实数a、b,若a*b的运算原理如图所示,求(2)中S、V的运算S*V.


(1)画出该几何体的直观图;
(2)求此几何体的表面积S与体积V;
(3)对任意实数a、b,若a*b的运算原理如图所示,求(2)中S、V的运算S*V.


24.
如图①,在边长为4的正方形ABCD中,E,F分别是边AB,BC上的点(端点除外),将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于点A′(如图②).
(1)求证:A′D⊥EF;
(2)当点E,F分别为AB,BC的中点时,求直线A′E与直线BD所成角的余弦值.
(1)求证:A′D⊥EF;
(2)当点E,F分别为AB,BC的中点时,求直线A′E与直线BD所成角的余弦值.

25.
已知坐标平面点M(x,y)与两个定点M1(1,1),M2(4,1)的距离之比为
.
(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为C,过点A(﹣1,﹣1)的直线l被C所截得的线段的长为2
,求直线l的方程.

(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为C,过点A(﹣1,﹣1)的直线l被C所截得的线段的长为2

26.
从某保险公司的推销员中随机抽取50名,统计这些推销员某月的月销售额(单位:千元),由统计结果得如图频数分别表:

(1)作出这些数据的频率分布直方图;
(2)估计这些推销员的月销售额的平均数(同一组中的数据用该组区间的中点作代表);
(3)根据以上抽样调查数据,公司将推销员的月销售指标确定为17.875千元,试判断是否有60%的职工能够完成该销售指标.
月销售额 分组 | [12.25,14.75) | [14.75,17.25) | [17.25,19.75) | [19.75,22.25) | [22.25,24.75) |
频数 | 4 | 10 | 24 | 8 | 4 |

(1)作出这些数据的频率分布直方图;
(2)估计这些推销员的月销售额的平均数(同一组中的数据用该组区间的中点作代表);
(3)根据以上抽样调查数据,公司将推销员的月销售指标确定为17.875千元,试判断是否有60%的职工能够完成该销售指标.
27.
在高中学习过程中,同学们常这样说:“如果你的物理成绩好,那么你的数学学习就不会有什么大问题.”某班针对“高中物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系,如表为该班随机抽取6名学生在一次考试中的物理和数学成绩:
(1)求数学成绩y对物理成绩x的线性回归方程;
(2)该班某同学的物理成绩100分,预测他的数学成绩.
参考公式:回归方程
中斜率和截距的最小二乘估计公式分别为:
,
参考数据:752+652+752+652+602+802=29700,
75×125+65×117+75×110+65×103+60×95+80×110=46425.
学生编号 学科 | 1 | 2 | 3 | 4 | 5 | 6 |
物理成绩(x) | 75 | 65 | 75 | 65 | 60 | 80 |
数学成绩(y) | 125 | 117 | 110 | 103 | 95 | 110 |
(1)求数学成绩y对物理成绩x的线性回归方程;
(2)该班某同学的物理成绩100分,预测他的数学成绩.
参考公式:回归方程



参考数据:752+652+752+652+602+802=29700,
75×125+65×117+75×110+65×103+60×95+80×110=46425.
试卷分析
-
【1】题量占比
单选题:(12道)
选择题:(5道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:22