1.单选题- (共3题)
2.填空题- (共10题)
10.
对于两条平行直线与圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”,已知直线
,直线
与圆
的位置关系是“平行相交”,则实数
的取值范围是_________.




3.解答题- (共5题)
16.
如图,我区新城公园将在长34米、宽30米的矩形地块内开凿一个“挞圆”形水池,水池边缘由两个半椭圆
和
组成,其中
,“挞圆”内切于矩形(即“挞圆”与矩形各边均有且只有一个公共点).

(1)求“挞圆”的方程;
(2)在“挞圆”形水池内建一矩形网箱养殖观赏鱼,若该矩形网箱的一条边所在直线方程为
,求该网箱所占水面面积的最大值.




(1)求“挞圆”的方程;
(2)在“挞圆”形水池内建一矩形网箱养殖观赏鱼,若该矩形网箱的一条边所在直线方程为

17.
如图,设
为坐标原点,点
是椭圆
的右焦点,
上任意一点到该椭圆的两个焦点的距离之和为
.分别过
的两条直线
与
相交于点
(异于
两点).

(1)求椭圆
的方程:
(2)若
分别为直线
与
的斜率,求
的值:
(3)若
求证:直线
与
的斜率之和为定值,并将此命题加以推广。写出更一般的结论(不用证明).











(1)求椭圆

(2)若




(3)若



试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(10道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18