1.单选题- (共11题)
5.
通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
经计算
的观测值
. 参照附表,得到的正确结论是
附表:
经计算


附表:
| 男 | 女 | 总计 |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
A.有99%以上的把握认为“爱好该项运动与性别有关” |
B.有99%以上的把握认为“爱好该项运动与性别无关” |
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” |
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” |
6.
甲、乙、丙、丁四位同学高考之后计划去
三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去
社区,乙不去
社区,则不同的安排方法种数为 ( )



A.24 | B.8 | C.7 | D.6 |
8.
先后掷一枚质地均匀骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为
,设事件
为“
为偶数”,事件
为“
中有偶数,且
”,则概率
( )







A.![]() | B.![]() | C.![]() | D.![]() |
9.
如图所示为一正态曲线,
为方程x2+x-6=0的正根,若用区间
内的概率作为某次高二年级800人参加数学考试的优秀率,则优秀人数为( )(取整数,只舍不入)(附:
,
,
)







A.36 | B.72 | C.126 | D.254 |
2.选择题- (共2题)
3.填空题- (共3题)
16.
如图所示的三角形ABC中,一机器人从三角形ABC上的每一个顶点移动到另一个顶点,(规定:每次只能从一个顶点移动到另一个顶点),而且按逆时针方向移动的概率为顺时针方向移动的概率的3倍,假设现在机器人的初始位置为顶点A处,则通过三次移动后返回到A处的概率为________________________
4.解答题- (共5题)
19.
已知函数y=a+bx与
,若对于任意一点
,过点
作与X轴垂直的直线,交函数y=a+bx的图象于点
,交函数
的图象于点
,定义:
,若
则用函数y=a+bx来拟合Y与X之间的关系更合适,否则用函数
来拟合Y与X之间的关系
(1)给定一组变量P1(1,4),P2(2,5),p3(3,6),p4(4,5.5),p5(5,5.6),p6(6,5.8),对于函数
与函数
,试利用定义求Q1,Q2的值,并判断哪一个更适合作为点PI(xi,yi)(i=1,2,3…6)中的Y与X之间的拟合函数;
(2)若一组变量的散点图符合
图象,试利用下表中的有关数据与公式求y对x的回归方程, 并预测当
时,
的值为多少.
表中的
(附:对于一组数据
,其回归直线方程
的斜率和截距的最小二乘估计分别为
)









(1)给定一组变量P1(1,4),P2(2,5),p3(3,6),p4(4,5.5),p5(5,5.6),p6(6,5.8),对于函数


(2)若一组变量的散点图符合



![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
表中的

(附:对于一组数据



20.
某数学兴趣小组共有12位同学,下图是他们某次数学竞赛成绩的茎叶图,

其中有一个数字模糊不清,图中用
表示,规定成绩不低于80分为优秀.
(1)已知该12位同学竞赛成绩的中位数为78,求图中
的值;
(2)从该12位同学中随机选3位同学,进行竞赛试卷分析,
设其中成绩优秀的人数为
,求
的分布列及数学期望与方差.

其中有一个数字模糊不清,图中用

(1)已知该12位同学竞赛成绩的中位数为78,求图中

(2)从该12位同学中随机选3位同学,进行竞赛试卷分析,
设其中成绩优秀的人数为


试卷分析
-
【1】题量占比
单选题:(11道)
选择题:(2道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19