1.单选题- (共10题)
2.
设命题p:若x,y∈R,x=y,则;命题q:若函数f(x)=ex,则对任意x1≠x2都有
成立.在命题①p∧q,②p∨q,③p∧(
),④(
)∨q中,真命题是( )
A.①③ | B.①④ | C.②③ | D.②④ |
4.
如图所示,在边长为1的正方形OABC内任取一点P,用M表示事件“点P恰好取自曲线
与直线
及y轴所围成的曲边梯形内”,N表示事件“点P恰好取自阴影部分内”,则
等于( )





A.![]() | B.![]() | C.![]() | D.![]() |
7.
一个几何体的三视图如图所示,其中俯视图的曲线部分是四分之一圆弧,该几何体的表面上的点M在正视图上的对应点为A(中点),几何体的表面的点N在正视图上的对应点为B,则在此几何体的侧面上从M到N的路径中,最短路径的长度为( )。


A.![]() | B.![]() | C.![]() | D.![]() |
10.
随着“银发浪潮”的涌来,养老是当下普遍关注的热点和难点问题,某市创新性的采用“公建民营”的模式,建立标准的“日间照料中心”,既吸引社会力量广泛参与养老建设,也方便规范化管理,计划从中抽取5个中心进行评估,现将所有中心随机编号,用系统(等距)抽样的方法抽取,已知抽取到的号码有4号16号和22号,则下面号码中可能被抽到的号码是( )
A.9 | B.12 | C.15 | D.28 |
2.选择题- (共1题)
3.填空题- (共4题)
4.解答题- (共5题)
18.
已知梯形
如图(1)所示,其中
,
,四边形
是边长为
的正方形,现沿
进行折叠,使得平面
平面
,得到如图(2)所示的几何体.
(1)求证:平面
平面
;
(2)已知点
在线段
上,且
平面
,求
与平面
所成角的正弦值.









(1)求证:平面


(2)已知点








20.
随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过
的包裹收费10元;重量超过
的包裹,除
收费10元之外,每超过
(不足
,按
计算)需再收5元.
该公司将最近承揽的100件包裹的重量统计如下:
公司对近60天,每天揽件数量统计如下表:
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?






该公司将最近承揽的100件包裹的重量统计如下:
包裹重量(单位:![]() | 1 | 2 | 3 | 4 | 5 |
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司对近60天,每天揽件数量统计如下表:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 12 | 6 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?
试卷分析
-
【1】题量占比
单选题:(10道)
选择题:(1道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19