1.选择题- (共2题)
2.填空题- (共13题)
3.解答题- (共6题)
18.
某地发生地质灾害,使当地的自来水受到了污染,某部门对水质检测后,决定往水中投放一种药剂来净化水质.已知每投放质量为m的药剂后,经过x天该药剂在水中释放的浓度y(毫克/升)满足
,其中
,当药剂在水中释放的浓度不低于4(毫克/升)时称为有效净化;当药剂在水中释放的浓度不低于4(毫克/升) 且不高于10(毫克/升)时称为最佳净化.
(1)如果投放的药剂质量为m=4,试问自来水达到有效净化一共可持续几天?
(2)如果投放的药剂质量为m,为了使在7天(从投放药剂算起包括7天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m的最小值.


(1)如果投放的药剂质量为m=4,试问自来水达到有效净化一共可持续几天?
(2)如果投放的药剂质量为m,为了使在7天(从投放药剂算起包括7天)之内的自来水达到最佳净化,试确定应该投放的药剂质量m的最小值.
19.
记
分别为函数
的导函数.若存在
,满足
且
,则称
为函数
与
的一个“
点”.
(1)证明:函数
与
不存在“
点”;
(2)若函数
与
存在“
点”,求实数
的值;
(3)已知函数
,
.对任意
,判断是否存在
,使函数
与
在区间
内存在“
点”,并说明理由.









(1)证明:函数



(2)若函数




(3)已知函数








试卷分析
-
【1】题量占比
选择题:(2道)
填空题:(13道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19