山东省东营市垦利区(五四制)2018-2019学年八年级下学期期中考试数学试题

适用年级:初二
试卷号:207228

试卷类型:期中
试卷考试时间:2019/5/7

1.单选题(共7题)

1.
下列运算正确的是(  )
A. +=B. =2C. •=D.÷=2
2.
要使二次根式有意义,则x的取值范围是(   )
A.x≥B.x≤C.x≥D.x≤
3.
如图,四边形是平行四边形,点是边上一点,且于点延长线上一点,下列结论:①平分; ②平分; ③; ④.其中正确结论的个数为(  )
A.1B.2C.3D.4
4.
在下列各组数据中,不能作为直角三角形的三边边长的是(  )
A.3,4,6B.7,24,25C.6,8,10D.9,12,15
5.
如图①,美丽的弦图,蕴含着四个全等的直角三角形.已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c.如图②,现将这四个全图②等的直角三角形紧密拼接,形成飞镖状,已知外围轮廓(实线)的周长为24,OC=3,则该飞镖状图案的面积(  )
A.6B.12C.24D.24
6.
下列命题是真命题的是( )
A.四边都是相等的四边形是矩形B.菱形的对角线相等
C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形
7.
如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是( )
A.65°B.50°C.60°D.75°

2.选择题(共2题)

8.

阅读下面的文字,完成下列各题。

霍松林先生的教学与研究

    2017年2月1日,霍松林先生在走过人生第97个春秋后,溘然长逝。先生从上世纪50年代至今,教书70多年,仅在陕西师范大学执教就有半个多世纪。一生平淡而又非凡。

    先生教书首先从编写教材入手。20世纪50年代初,高校中文科处于创业阶段,要求多开新课,用新观点教学。但霍先生接手的三门新课之一的文艺学,既无教材,又无参考资料。怎么办?他开始搜集和阅读大量资料,力图用辩证唯物主义的观点,方法重新分析已有的理论。几经补充修改,到1953年秋,终于完成了26万字的《文艺学概论》。就这样,我国便有了最早的一部新型文艺理论教材。

    霍先生讲课很有特点,他为本科生讲古文,诗、词,从来不看讲义,边背诵,边讲解,却一字不差。跟别的老师只管讲解不同,霍先生根据自己的经验和体会,严格要求学生背诵大量的诗文名著、精读必要的古典名著,以奠定学生的知识基础。

    20世纪80年代以后,霍先生把订精力放在培养硕士、博士研究生上。到2015年,霍先生先后培养了20多名硕士和70余名博士。他们走向全国各地,大都成为所在单位教学科研的骨干或学术带头人,学界称之为“霍家军”。而他本人则被誉为“关西孔子”“海内儒宗”。鉴于他几十年来为学校作出的杰出贡献,陕西师大于2014年为他颁发了“陕西师范大学杰出贡献奖”,奖金100万元。但他随即用其设立了“霍松林国学奖学金”,以奖掖后辈。

    霍先生有句名言:“我的工作是教学,所谓研究,其实是备课。”

    霍先生曾在《“断代”的研究内容与非“断代”的研究方法》一方中强调,“断代”研究不能用“断代”的研究方法。就研究唐诗说,不应割断它与唐以前、唐以后诗歌发展的联系,尤其不应忽视唐诗与今诗的关系。

    霍先生经常引用《南齐书•文学传论》中的一句名言:“若无新变,不能代雄。”霍先生与弟子傅绍良合著的《盛唐文学的文化透视》,开辟了盛唐文学研究的新领域,给后来研究者提供了新的研究思路和方法。

    霍先生的古典文学研究,是建立在他雄厚的文艺理论基础之上的。他自己除撰有《文艺学概论》《文艺学简论》《诗的形象及其他》等著作之外,还整理了大量古代文艺理论著作,如校注《滹南诗话》《瓯北诗话》,主编《中国古代文论名篇说注》《控文论名篇详注》《中国诗论史》,并把这些理论运用到古代诗文的研究实践当中,因而成就斐然。

    我至今还记得,1982年霍先生主持召开全国首届唐诗讨论会的情景。当他在开幕致辞中说到“我们的这次全国性的唐诗讨论会,新中国成立以来是第一次,唐代以来也是第一次”时,全场响起雷鸣般的掌声。“唐代以来的第一次”,此话气势非凡,振奋人心。也是在这次会议上,程千帆先生给霍先生题写斋榜“唐音阁”,从此,“唐音”走遍全国,走向世界。

    霍先生晚年仍笔耕不辍,2001年,出版《唐音阁论文集》《唐音阁译诗集》《唐音阁诗词集》《唐音阁随笔集》等系列著作。2010年霍先生90寿辰时,他亲自整理编撰的《霍松林选集》(十卷本)正式出版,集中体现了其学术成就。

    “学海珠玑光简册,诗坛星月耀乾坤”,这是霍先生1982年献给首届全国唐诗讨论会的诗句,今天用来概括先生的学术风范也十分恰当。先生离开我们了,但“唐音”永存,他的著作将永远流传,光照千古。

(摘编自张新科《霍松林:“唐音”永存》)

9.

下面是小余在调查双桂山生物种类时的具体做法,其中正确的是(  )

3.填空题(共8题)

10.
计算:=________.
11.
如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.
12.
已知直角三角形的两边长x、y满足,则第三边的长为_______________。
13.
如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________。
14.
己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____
15.
如图,ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=  厘米.
16.
如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为_______.
17.
如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1 B 1 C 1 D 1 ;把正方形A 1 B 1 C 1 D 1 边长按原法延长一倍得到正方形A 2 B 2 C 2 D 2 (如图(2));以此下去,则正方形A n B n C n D n 的面积为________.

4.解答题(共6题)

18.
计算:
(1) 
(2)
19.
先化简,再求值: ,其中
20.
如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m(踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B离地面垂直高度BC为1m,离秋千支柱AD的水平距离BE为1.5m(不考虑支柱的直径).求秋千支柱AD的高.
21.
如图,已知在四边形ABCD中,∠A=90°,AB=2cm,AD=cm,CD=5cm,BC=4cm,求四边形ABCD的面积.
22.
如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交ABCD边于点EF
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
23.
如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点
A.

(1)判断四边形ACED的形状,并说明理由;
(2)若BD=8cm,求线段BE的长.
试卷分析
  • 【1】题量占比

    单选题:(7道)

    选择题:(2道)

    填空题:(8道)

    解答题:(6道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:6

    7星难题:0

    8星难题:3

    9星难题:12