1.单选题- (共9题)
4.
下列结论中,错误的有( )
①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为a,b,c,若a2+b2=c2,则∠A=90°;③在△ABC中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC是直角三角形;④若三角形的三边长之比为3∶4∶5,则该三角形是直角三角形.
①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;②△ABC的三边长分别为a,b,c,若a2+b2=c2,则∠A=90°;③在△ABC中,若∠A∶∠B∶∠C=1∶5∶6,则△ABC是直角三角形;④若三角形的三边长之比为3∶4∶5,则该三角形是直角三角形.
A.0个 | B.1个 | C.2个 | D.3个 |
6.
如图,设正方体ABCD-A1B1C1D1的棱长为1,黑甲壳虫从点A出发,白甲壳虫从点C1出发,它们以相同的速度分别沿棱向前爬行.黑甲壳虫爬行的路线是:AA1→A1D1→D1C1→C1C→CB→BA→AA1→A1D1…,白甲壳虫爬行的路线是:C1C→CB→BB1→B1C1→C1C→CB…,那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的最短路程的平方是( )


A.2 | B.3 | C.4 | D.5 |
7.
如图,把长方形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若∠FPH=90°,PF=8,PH=6,则长方形ABCD的边BC的长为( )


A.20 | B.22 | C.24 | D.30 |
9.
若△ABC的三边长a,b,c满足(a-b)2+|b-2|+(c2-8)2=0,则下列对此三角形的形状描述最确切的是( )
A.等边三角形 | B.等腰三角形 | C.等腰直角三角形 | D.直角三角形 |
2.填空题- (共6题)
12.
我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=15,则S2的值是_____.

3.解答题- (共7题)
16.
中国机器人创意大赛于2014年7月15日在哈尔滨开幕.如图是一参赛队员设计的机器人比赛时行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了

A.问机器人从点A到点B之间的距离是多少? |

17.
如图,在由6个大小相同的小正方形组成的方格中,设每个小正方形的边长均为1.
(1)如图①,
,
,
是三个格点(即小正方形的顶点),判断
与
的位置关系,并说明理由;

(2)如图②,连接三格和两格的对角线,求
的度数(要求:画出示意图,并写出证明过程).
(1)如图①,






(2)如图②,连接三格和两格的对角线,求


20.
有一个如图所示的长方体的透明鱼缸,假设其长AD=80 cm,高AB=60 cm,水深AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm.一小虫想从鱼缸外的点A处沿缸壁爬到鱼缸内G处吃鱼饵.
(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;
(2)试求小虫爬行的最短路程.
(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;
(2)试求小虫爬行的最短路程.

21.
如图,河边有A,B两个村庄,A村距河边10 m,B村距河边30 m,两村平行于河边方向的水平距离为30 m,现要在河边建一抽水站,需铺设管道抽水到A村和B村.
(1)求铺设管道的最短长度是多少,请画图说明;
(2)若铺设管道每米需要500元,则最低费用为多少?
(1)求铺设管道的最短长度是多少,请画图说明;
(2)若铺设管道每米需要500元,则最低费用为多少?

试卷分析
-
【1】题量占比
单选题:(9道)
填空题:(6道)
解答题:(7道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:2
7星难题:0
8星难题:0
9星难题:20