1.单选题- (共7题)
3.
如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。则说明这两个三角形全等的依据是[来()


A.SAS B. ASA C. AAS D. SSS |
2.选择题- (共3题)
3.填空题- (共8题)
4.解答题- (共8题)
20.
如图,在边长为1的小正方形组成的方格纸中,有一个以格点为顶点的△ABC.
(1)试根据三角形三边关系,判断△ABC的形状;
(2)在方格纸中利用直尺分别画出AB、BC的垂直平分线(要求描出关键格点),交点为O.问点O到△ABC三个顶点的距离相等吗?说明理由。
(1)试根据三角形三边关系,判断△ABC的形状;
(2)在方格纸中利用直尺分别画出AB、BC的垂直平分线(要求描出关键格点),交点为O.问点O到△ABC三个顶点的距离相等吗?说明理由。

22.
如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.

(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.

(1)求证:BE=CE;
(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.
24.
阅读探索题:
(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,交射线ON,OM为C,B两点,在射线OP上任取一点A(O点除外),连接AB,AC,求证:△AOB≌△AO

(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,交射线ON,OM为C,B两点,在射线OP上任取一点A(O点除外),连接AB,AC,求证:△AOB≌△AO
A. (2)请你参考这个作全等三角形的方法,解答下列问题: ①如图2:在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系; ②如图3,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,求AB的长. |

25.
如图,有一个圆柱,它的高为8cm,底面半径等于2cm,在圆柱下底面的A点处有一只蚂蚁,蚂蚁想吃到上底面上与A点相对的B点处的食物,求蚂蚁在圆柱外表面上爬行的最短路程。(π取值约为3)

试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(3道)
填空题:(8道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:10
7星难题:0
8星难题:1
9星难题:12