刷题首页
题库
高中数学
题干
已知圆
F
1
:(
x
+2)
2
+
y
2
=36,定点
F
2
(2,0),
A
是圆
F
1
上的一动点,线段
F
2
A
的垂直平分线交半径
F
1
A
于
P
点,则
P
点的轨迹
C
的方程是( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-03-28 05:47:27
答案(点此获取答案解析)
同类题1
已知点
在椭圆
上,椭圆的右焦点
,直线
过椭圆的右顶点
,与椭圆交于另一点
,与
轴交于点
.
(1)求椭圆
的方程;
(2)若
为弦
的中点,是否存在定点
,使得
恒成立?若存在,求出
点的坐标,若不存在,请说明理由;
(3)若
,交椭圆
于点
,求
的范围.
同类题2
已知圆
,定点
,点
在圆
上移动,作线段
的中垂线交
于点
,则点
的轨迹方程是( )
A.
B.
C.
D.
同类题3
已知椭圆
C
:
的左、右焦点分别为
,
且离心率为
,过左焦点
的直线
l
与
C
交于
A
,
B
两点,
的周长为
.
求椭圆
C
的方程;
当
的面积最大时,求
l
的方程.
同类题4
已知
是圆
:
上任意一点,
,线段
的垂直平分线与半径
交于点
,当点
在圆
上运动时,记点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)记曲线
与
轴交于
两点,
是直线
上任意一点,直线
,
与曲线
的另一个交点分别为
,求证:直线
过定点
.
同类题5
已知椭圆
C
:
的离心率为
,焦距为
,
A
,
B
分别为椭圆
C
的上、下顶点,点
M
(
t
,2)(
t
≠0).
(1)求椭圆
C
的方程;
(2)若直线
MA
,
MB
与椭圆
C
的另一交点分别为
P
,
Q
,证明
PQ
过定点
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的定义
利用椭圆定义求方程