刷题首页
题库
高中数学
题干
中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分旧井,取得了地质资料.进入全面勘探时期后集团按网络点来布置井位来进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见下表:
井位
1
2
3
4
5
6
坐标
钻探深度
2
4
5
6
8
10
出油量
40
70
110
90
160
205
(1)若1
6号旧井位置满足线性分布,借助前5组数据所求得的回归直线方程为
,且
,求
,并估计
的预报值;
(2)现准备勘探新井7(1,25),若通过,1,3,5,7号井计算出的
,
的值与(1)中
,
的值的差不超过10%,则使用位置最接近的旧井
,否则在新位置打井,请判断可否使用旧井?(注:其中
的计算结果用四舍五入法保留一位小数)
参考数据:
参考公式:
上一题
下一题
0.99难度 解答题 更新时间:2020-03-28 02:42:06
答案(点此获取答案解析)
同类题1
某市预测2000年到2004年人口总数与年份的关系如下表所示
年份200x(年)
0
1
2
3
4
人口数y(十)万
5
7
8
11
19
(1)请根据上表提供的数据,计算
,用最小二乘法求出
关于
的线性回归方程
(2) 据此估计2005年该城市人口总数.
(参考数值:0×5+1×7+2×8+3×11+4×19=132,
参考公式:用最小二乘法求线性回归方程系数公式
)
同类题2
2015年一交警统计了某路段过往车辆的车速大小与发生的交通事故次数,得到如下表所示的数据:
车速x(km/h)
60
70
80
90
100
事故次数y
1
3
6
9
11
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
=
x+
;
(Ⅲ)试根据(Ⅱ)求出的线性回归方程,预测在2016年该路段路况及相关安全设施等不变的情况下,车速达到110km/h时,可能发生的交通事故次数.
(附:b=
,
=
-
,其中
,
为样本平均值)
同类题3
曲一中某研究性学习小组对学习数学的练习时间与进步率的关系进行研究,他们分别记录了同班5个同学一周内的学习时间与周测成绩进步率,得到如下资料.
(1)从5个同学中任选2个,记其进步率分别为
,求事件“
均不小于25”的概率;
(2)若进步率
与学习时间
服从线性关系,求出
关于
的线性回归方程
;
(3)在这5个同学中任取3个,其中进步率超过25的有
个同学,求
的数学期望.
参考公式:回归直线方程是
,其中
同类题4
为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民粮食生产的积极性,从2004年开始,国家实施了对种粮农民直接补贴.通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额
(亿元)与该地区粮食产量
(万亿吨)之间存在着线性相关关系.统计数据如下表:
年份
2014年
2015年
2016年
2017年
2018年
补贴额
亿元
9
10
12
11
8
粮食产量
万亿吨
23
25
30
26
21
(1)请根据如表所给的数据,求出
关于
的线性回归直线方程
;
(2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴额7亿元,请根据(1)中所得的线性回归直线方程,预测2019年该地区的粮食产量.
(参考公式:
,
)
同类题5
已知变量
与
之间存在几组对照数据如下表所示,由对照数据可以求出回归直线方程为
;若
,则
2
3
5
3
5.5
6.5
A.14
B.11
C.13
D.12
相关知识点
计数原理与概率统计
统计
变量间的相关关系
回归直线方程
用回归直线方程对总体进行估计
求回归直线方程