刷题首页
题库
高中数学
题干
若
,用反证法证明:函数
无零点.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-27 12:10:40
答案(点此获取答案解析)
同类题1
如图,已知四棱锥
P
-
ABCD
的底面
ABCD
是平行四边形,
PA
⊥平面
ABCD
.
M
是
AD
的中点,
N
是
PC
的中点.
(1)求证:
MN
∥平面
PAB
;
(2)若平面
PMC
⊥平面
PAD
,求证:
CM
⊥
AD
;
(3)若平面
ABCD
是矩形,
PA
=
AB
,求证:平面
PMC
⊥平面
PBC
.
同类题2
已知定义域为
的函数
同时满足以下三个条件:
(1) 对任意的
,总有
;(2)
;(3) 若
,
,且
,则有
成立,则称
为“友谊函数”,请解答下列各题:
(1)若已知
为“友谊函数”,求
的值;
(2)函数
在区间
上是否为“友谊函数”?并给出理由.
(3)已知
为“友谊函数”,假定存在
,使得
且
, 求证:
.
同类题3
已知数列
满足
,
,
,
(1)求
,
,
的值,并猜想
的通项公式;
(2)求证:分别以
,
,
为边的三角形不可能为直角三角形.
同类题4
设
,若存在
,使得
,且对任意
,均有
(即
是一个公差为
的等差数列),则称数列
是一个长度为
的“弱等差数列”.
(1)判断下列数列是否为“弱等差数列”,并说明理由.
①1,3,5,7,9,11;
②2,
,
,
,
.
(2)证明:若
,则数列
为“弱等差数列”.
(3)对任意给定的正整数
,若
,是否总存在正整数
,使得等比数列:
是一个长度为
的“弱等差数列”?若存在,给出证明;若不存在,请说明理由
同类题5
设集合
由满足下列两个条件的数列
构成:①
②存在实数
使得
对任意正整数
都成立.
(1)现在给出只有5项的有限数列
试判断数列
是否为集合
的元素;
(2)设数列
的前项和为
且
若对任意正整数
点
均在直线
上,证明:数列
并写出实数
的取值范围;
(3)设数列
若数列
没有最大值,求证:数列
一定是单调递增数列。
相关知识点
不等式选讲
证明不等式的基本方法