刷题首页
题库
高中数学
题干
已知抛物线
:
(
)上横坐标为4的点到焦点的距离为5.
(1)求抛物线
的方程;
(2)设直线
与抛物线
交于不同两点
,若满足
,证明直线
恒过定点,并求出定点
的坐标.
上一题
下一题
0.99难度 解答题 更新时间:2020-03-23 07:45:39
答案(点此获取答案解析)
同类题1
抛物线
的焦点为
,过
且倾斜角为60°的直线为
,
,若抛物线
上存在一点
,使
关于直线
对称,则
( )
A.2
B.3
C.4
D.5
同类题2
过抛物线
的焦点
的直线交该抛物线于
、
两点,若
,
为坐标原点,则
__________.
同类题3
已知点
,过抛物线
上一点
的直线与直线
垂直相交于点
,若
,则
的横坐标为( )
A.
B.2
C.
D.1
同类题4
已知点
是抛物线
上不同的两点,
为抛物线的焦点,且满足
,弦
的中点
到直线
:
的距离记为
,若
,则
的最小值为()
A.
B.
C.
D.
同类题5
已知抛物线
上的点
到其焦点的距离为2,则
的横坐标是( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线的定义
抛物线定义的理解
根据抛物线上的点求标准方程