刷题首页
题库
高中数学
题干
与双曲线
1有相同的焦点,且离心率为
的椭圆的标准方程为_____.
上一题
下一题
0.99难度 填空题 更新时间:2020-03-24 09:14:27
答案(点此获取答案解析)
同类题1
已知椭圆
:
的左焦点为
,过点
的直线
:
和椭圆
交于两点
和
,和
轴交于点
.若
,则椭圆
的离心率
( )
A.
B.
C.
D.
同类题2
已知椭圆
的左、右焦点分别为
,点
是椭圆上任意一点,
的最小值为
,且该椭圆的离心率为
.
(1)求椭圆
的方程;
(2)若
是椭圆
上不同的两点,且
,若
,试问直线
是否经过一个定点?若经过定点,求出该定点的坐标;若不经过定点,请说明理由.
同类题3
已知椭圆
的左焦点为
,左、右顶点分别为
,过点
且倾斜角为
的直线
交椭圆于
两点,椭圆
的离心率为
,
.
(1)求椭圆
的方程;
(2)若
是椭圆上不同两点,
轴,圆
过点
,且椭圆上任意一点都不在圆
内,则称圆
为该椭圆的内切圆.问椭圆
是否存在过点
的内切圆?若存在,求出点
的坐标;若不存在,说明理由.
同类题4
已知椭圆
:
的离心率为
,以椭圆长、短轴四个端点为顶点为四边形的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图所示,记椭圆的左、右顶点分别为
、
,当动点
在定直线
上运动时,直线
分别交椭圆于两点
、
,求四边形
面积的最大值.
同类题5
已知椭圆
过点
,且两焦点与短轴的一个顶点的连线构成等腰直角三角形.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过
的直线
交椭圆于
,
两点,试问:是否存在一个定点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求双曲线的焦点坐标