刷题首页
题库
高中数学
题干
已知椭圆
C
:
+
=1(
a
>
b
>0)具有性质:若
M
,
N
是椭圆
C
上关于原点对称的两点,点
P
是椭圆
C
上任意一点,当直线
PM
,
PN
的斜率都存在时,分别记为
k
PM
,
k
PN
,那么
k
PM
与
k
PN
之积是与点
P
的位置无关的定值.试对双曲线
E
:
-
=1(
a
>0,
b
>0)写出类似的性质,并加以证明.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-22 08:10:52
答案(点此获取答案解析)
同类题1
已知圆
有以下性质:
①过圆
上一点
的圆的切线方程是
.
②若不在坐标轴上的点
为圆
外一点,过
作圆
的两条切线,切点分别为
,则
垂直
,即
.
(1)类比上述有关结论,猜想过椭圆
上一点
的切线方程 (不要求证明);
(2)若过椭圆
外一点
(
不在坐标轴上)作两直线,与椭圆相切于
两点,求证:
为定值.
同类题2
有些数学游戏的结果是可以预知的,比如从1,2,3,4,5,6,7,8,9这九个数字中,任取两个数字出来,然后排出所有的两位数,数字不能重复.把所有的两位数全部加起来,再除以这两个数字之和,结果一定是11.例如我们取出的是3和9,则能组成93和39,加起来是132,除以12,会得到11.那么如果任意取三个数字,任意排出不同的三位数,按以上操作一定得到的结果是( )
A.111
B.11
C.22
D.222
同类题3
若点
P
0
(
x
0
,
y
0
)在椭圆
(
a
>
b
>0)外,过点
P
0
作该椭圆的两条切线,切点分别为
P
1
,
P
2
,则切点弦
P
1
P
2
所在直线的方程为
.那么对于双曲线
(
a
>0,
b
>0),类似地,可以得到一个正确的切点弦方程为________.
同类题4
我们知道:在平面内,点
到直线
的距离公式为
,通过类比的方法,可求得:在空间中,点
到平面
的距离为__________.
同类题5
已知
,
是双曲线
上关于原点对称的两点,点
是该双曲线上的任意一点.若直线
,
的斜率都存在,则
的值为定值.试类比上述双曲线的性质,得到椭圆
的一个类似性质为:设
,
是椭圆
上关于原点对称的两点,点
是椭圆上的任意一点.若直线
,
的斜率都存在,则
的值为定值,该定值为__________.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
圆锥曲线中的类比推理