刷题首页
题库
高中数学
题干
(本小题满分12分)已知数列{a
n
}的第一项a
1
=5且S
n
-1
=a
n
(n≥2,n∈N
*
),S
n
为数列{a
n
}的前n项和.
(1)求a
2
,a
3
,a
4
,并由此猜想a
n
的表达式;
(2)用数学归纳法证明{a
n
}的通项公式.
上一题
下一题
0.99难度 解答题 更新时间:2015-07-07 06:04:35
答案(点此获取答案解析)
同类题1
已知数列
的前
项和为
,
,
.
(1)求
;
(2)猜想数列
的通项公式,并用数学归纳法给予证明.
同类题2
已知数列{
a
n
}满足
.
(1)用数学归纳法证明:
;
(2)令
,证明:
.
同类题3
用数学归纳法证明等式:
,验证
时,等式左边=________.
同类题4
某个命题与正整数有关,若当
时该命题成立,那么可推得当
时该命题也成立,现已知当
时该命题不成立,那么可推得( )
A.当
时,该命题不成立
B.当
时,该命题成立
C.当
时,该命题成立
D.当
时,该命题不成立
同类题5
设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k
2
成立时,总可推出f(k+1)≥(k+1)
2
成立”.则下列命题总成立的是( )
A.若f(3)≥9成立,则当k≥1,均有f(k)≥k
2
成立
B.若f(5)≥25成立,则当k≤5时,均有f(k)≥k
2
成立
C.若f(7)<49成立,则当k≥8时,均有f(k)<k
2
成立
D.若f(4)=25成立,则当k≥4时,均有f(k)≥k
2
成立
相关知识点
推理与证明
数学归纳法