刷题首页
题库
高中数学
题干
半径为r的圆的面积s(r)=
,周长c(r)=2
,若将r看作
上的变量,则
=2
①式可用文字语言叙述为,圆的面积函数的导数等于圆的周长函数;对于半径为R的球,若将R看作
上的变量,请你写出类似于①的式子________________.②该式可用文字语言叙述为_____________________
上一题
下一题
0.99难度 填空题 更新时间:2017-07-12 10:33:12
答案(点此获取答案解析)
同类题1
在平面几何中,有“若△
ABC
的三边长分别为
a
,
b
,
c
,内切圆半径为
r
,则三角形面积为
S
△
ABC
=
(
a
+
b
+
c
)
r
”,拓展到空间,类比上述结论,若四面体
A
BCD
的四个面的面积分别为
S
1
,
S
2
,
S
3
,
S
4
,内切球的半径为
R
,则四面体的体积为( )
A.
(
S
1
+
S
2
+
S
3
)
R
B.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
2
C.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
2
D.
(
S
1
+
S
2
+
S
3
+
S
4
)
R
同类题2
在平面几何中,
的
内角平分线
分
所成线段的比
(如图所示),把这个结论类比到空间:在三棱锥
中(如图所示),面
平分二面角
且与
相交于点
,则得到的结论是______.
同类题3
在平面几何中,三角形的面积等于其周长的一半与其内切圆半径之积,类比之,在立体几何中,三棱锥的体积等于______.(用文字表述)
同类题4
给出下面四个推理:
①由“若
是实数,则
”推广到复数中,则有“若
是复数,则
”;
②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;
③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;
④由“直角坐标系中两点
、
的中点坐标为
”类比推出“极坐标系中两点
、
的中点坐标为
”.
其中,推理得到的结论是正确的个数有( )个
A.1
B.2
C.3
D.4
同类题5
我们知道:在长方形
中,如果设
,
,那么长方形
的外接圆的半径
满足:
.类比上述结论,在长方体
中,如果设
,
,
,那么长方体
的外接球的半径
满足的关系式是( )
A.
B.
C.
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比