刷题首页
题库
高中数学
题干
从三角形内部任意一点向各边引垂线,其长度分别为
,且相应各边上的高分别为
,求证:
=1.类比以上性质,给出空间四面体的一个猜想,并给出证明.
上一题
下一题
0.99难度 解答题 更新时间:2012-03-23 04:11:50
答案(点此获取答案解析)
同类题1
对平面中的任意平行四边形
,可以用向量方法证明:
,若将上诉结论类比到空间的平行六面体
,则得到的结论是( )
A.
B.
C.
D.
同类题2
在△
ABC
中,射影定理可表示为
a
=
b
·cos
C
+
c
·cos
B
.其中
a
,
b
,
c
分别为角
A
,
B
,
C
的对边,类比上述定理.写出对空间四面体性质的猜想.
同类题3
下列类比推理中,得到的结论正确的是( )
A.把长方体与长方形类比,则有长方体的对角线平方等于长、宽、高的平方和
B.把
与
类比,则有
C.向量
的数量积运算与实数
的运算性质
类比,则有
D.把
与
类比,则有
同类题4
已知
O
是△
ABC
内任意一点,连接
AO
,
BO
,
CO
并延长,分别交对边于
A
′,
B
′,
C
′,则
,这是一道平面几何题,其证明常采用“面积法”:
请运用类比思想猜想,对于空间中的四面体
V
BCD
,存在什么类似的结论,并用“体积法”证明.
同类题5
类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列一些性质,你认为比较恰当的是( )
①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。
A.①
B.②③
C.①②
D.①②③
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比