刷题首页
题库
高中数学
题干
Rt△
ABC
中,∠
BAC
=90°,作
AD
⊥
BC
,
D
为垂足,
BD
为
AB
在
BC
上的射影,
CD
为
AC
在
BC
上的射影,则有
AB
2
+
AC
2
=
BC
2
成立.直角四面体
P
﹣
ABC
(即
PA
⊥
PB
,
PB
⊥
PC
,
PC
⊥
PA
)中,
O
为
P
在△
ABC
内的射影,△0
AB
,△0
BC
,△0
CA
的面积分别记为
S
1
,
S
2
,
S
3
,△
ABC
的面积记为
S
.类比直角三角形中的射影结论,在直角四面体
P
﹣
ABC
中可得到正确结论
_____
.(写出一个正确结论即可)
上一题
下一题
0.99难度 填空题 更新时间:2011-04-11 07:20:35
答案(点此获取答案解析)
同类题1
在
中,
为
的中点,则
,将命题类比到三棱锥中去得到一个类比的命题为
__________
.
同类题2
边长为
的等边三角形内任一点到三边距离之和为定值,则这个定值为
;推广到空间,棱长为
的正四面体内任一点到各面距离之和为___________________.
同类题3
已知
中,
于
,三边分别是
,则有
;类比上述结论,写出下列条件下的结论:四面体
中,
、
、
、
的面积分别是
,二面角
、
、
的度数分别是
,则
__________.
同类题4
类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是( )
①各棱长相等,同一顶点上的任两条棱的夹角都相等;
②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;
③各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等.
A.①
B.②
C.①②③
D.③
同类题5
设△
ABC
的三边长分别为
a
,
b
,
c
,△
ABC
的面积为
S
,则△
ABC
的内切圆半径为
.将此结论类比到空间四面体:设四面体
的四个面的面积分别为
S
1
,
S
2
,
S
3
,
S
4
,体积为
V
,则四面体的内切球半径为
r
=( )
A.
B.
C.
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比