刷题宝
  • 刷题首页
题库 高中数学

题干

(本小题满分12分)设函数(为常数).
(1)当时,证明在[1,+∞)上是单凋递增函数;
(2)若函数有两个极值点,且,求证:.
上一题 下一题 0.99难度 解答题 更新时间:2015-10-09 05:02:06

答案(点此获取答案解析)

同类题1

利用反证法证明“若,则且”时,下列假设正确的是( )
A.且B.且
C.或D.或

同类题2

是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)对于一切正整数n都成立?证明你的结论.

同类题3

甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,回答如下:
甲说:丙没有考满分;乙说:是我考的;丙说:甲说的是真话.
事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是(   )
A.甲B.乙C.丙D.甲或乙

同类题4

用反证法证明命题“,,不可能成等比数列.”,其反设正确的是(   )
A.,,成等比数列B.,,成等差数列
C.,,不成等比数列D.,,不成等差数列

同类题5

当n∈N*时,,Tn=+++…+.
(Ⅰ)求S1,S2,T1,T2;
(Ⅱ)猜想Sn与Tn的关系,并用数学归纳法证明.
相关知识点
  • 推理与证明
  • 直接证明与间接证明
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)