刷题首页
题库
高中数学
题干
观察下面的解答过程:已知正实数
满足
,求
的最大值.
解:∵
,
相加得
,
∴
,等号在
时取得,即
的最大值为
.
请类比以上解题法,使用综合法证明下题:
已知正实数
满足
,求证
的最大值为
.
上一题
下一题
0.99难度 解答题 更新时间:2017-05-06 02:07:24
答案(点此获取答案解析)
同类题1
在《九章算术)方田章圆田术(刘徽注)中指出:“割之弥细,所失弥少.割之又割,以至不能割,则与圆周合体而无所失矣.”注述中所用的割圆术是一种无限与有限的转化过程,比如在
中“…”即代表无限次重复,但原式却是个定值
,这可以通过方程
确定出来
,类似地,可得
的值为( )
A.
B.
C.
D.
同类题2
关于圆周率
,祖冲之的贡献有二:①
;②用
作为约率,
作为密率.其中约率与密率提出了用有理数最佳逼近实数的问题,如
,惊人精密地接近于圆周率,准确到6位小数.约率与密率可通过用连分数近似表示的方法得到,如:
,舍去
,得到逼近
的一个有理数为
,类似地,把
化为连分数形式:
(
m
,
n
,
k
为正整数,
r
为0到1之间的无理数),舍去
r
得到逼近
的一个有理数为___________.
同类题3
已知
,由
有无穷多个根:0,
,
,
,…,可得:
,把这个式子的右边展开,发现
的系数为
,即
,请由
出发,类比上述思路与方法,可写出类似的一个结论_____.
同类题4
问题:当
时,求
的最小值.
解:
,
因为
,
,两个不等式等号取到时都为
,
故当
时,
有最小值3.
利用上述方法,可计算得函数
,
取得最小值时
为______
相关知识点
推理与证明
合情推理与演绎推理
类比推理
解题方法的类比