刷题首页
题库
高中数学
题干
36的所有正约数之和可按如下方法得到:因为36=2
2
×3
2
,所以36的所有正约数之和为(1+3+3
2
)+(2+2×3+2×3
2
)+(2
2
+2
2
×3+2
2
×3
2
)=(1+2+2
2
)(1+3+3
2
)=91,参照上述方法,可得100的所有正约数之和为()
A.217
B.273
C.455
D.651
上一题
下一题
0.99难度 单选题 更新时间:2017-09-08 04:16:41
答案(点此获取答案解析)
同类题1
斐波那契数列是数学史上一个著名数列,它是意大利数学家斐波那契在研究兔子繁殖时发现的,若数列
满足
,则称数列
为斐波那契数列,该数列有很多奇妙的性质,如根据
可得:
,类似的,可得:
( )
A.
B.
C.
D.
同类题2
请先阅读:在等式
的两边求导,得:
,由求导法则,得:
,化简得等式:
.利用上述的想法,结合等式
(
,正整数
)
(1)求
的值;
(2)求
的值.
同类题3
魏晋时期数学家刘徽首创割圆术,他在《九章算术》方田章圆田术中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是一种无限与有限的转化过程,比如在正数
中的“…”代表无限次重复,设
,则可以利用方程
求得x,类似地可得到正数
A.2
B.3
C.4
D.6
同类题4
己知数列{
a
n
}满足
a
1
=1,
a
2
=2,
a
n
+2
=
a
n
+
a
n
+1
,若将
a
n
+2
=
a
n
+
a
n
+1
变形为
a
n
+2
﹣
a
n
+1
=
a
n
,可得
a
1
+
a
2
+…+
a
n
=(
a
3
﹣
a
2
)+(
a
4
﹣
a
3
)+(
a
5
﹣
a
4
)+…+(
a
n
+2
﹣
a
n
+1
)=
a
n
+2
﹣
a
2
=
a
n
+2
﹣2,类似地,可得
a
1
2
+
a
2
2
+
a
3
2
+…+
a
2019
2
=( )
A.
B.
C.
D.
同类题5
我们把顶角为
的等腰三角形称为
黄金三角形
。其作法如下:①作一个正方形
;②以
的中点
为圆心,以
长为半径作圆,交
延长线于
;③以
为圆心,以
长为半径作
;④以
为圆心,以
长为半径作
交
于
,则
为黄金三角形。根据上述作法,可以求出
( )
A.
B.
C.
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
解题方法的类比