刷题首页
题库
高中数学
题干
已知三角形的三边分别为
,内切圆的半径为
,则三角形的面积为
;四面体的四个面的面积分别为
,内切球的半径为
.类比三角形的面积可得四面体的体积为()
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-03-08 02:41:32
答案(点此获取答案解析)
同类题1
二维空间中圆的一维测度(周长)
,二维测度(面积)
,观察发现
;三维空间中球的二维测度(表面积)
,三维测度(体积)
,观察发现
.已知四维空间中“超球”的三维测度
,猜想其四维测度
________.
同类题2
我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点
,且法向量为
的直线(点法式)方程为
,化简得
.类比以上方法,在空间直角坐标系中,经过点
,且法向量为
的平面(点法式)方程为
.
同类题3
对命题“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的什么位置?
A.正三角形的顶点
B.正三角形的中心
C.正三角形各边的中点
D.无法确定
同类题4
在
中,两直角边分别为
、
,设
为斜边上的高,则
,由此类比:三棱锥
中的三条侧棱
、
、
两两垂直,且长度分别为
、
、
,设棱锥底面
上的高为
,则
.
同类题5
在
R
t△
ABC
中,
AB
⊥
AC
,
AD
⊥
BC
于
D
,求证:
=
+
,那么在四面体
A
-
BCD
中,类比上述结论,你能得到怎样的猜想,并说明理由.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比