刷题首页
题库
高中数学
题干
已知
,给定
个整点
,其中
.
(Ⅰ)当
时,从上面的
个整点中任取两个不同的整点
,求
的所有可能值;
(Ⅱ)从上面
个整点中任取
个不同的整点,
.
(
i
)证明:存在互不相同的四个整点
,满足
,
;
(
ii
)证明:存在互不相同的四个整点
,满足
,
.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-30 08:40:14
答案(点此获取答案解析)
同类题1
设实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于 ( )
A.0
B.
C.
D.1
同类题2
设数列
的首项为1,前
n
项和为
,若对任意的
,均有
(
k
是常数且
)成立,则称数列
为“
数列”.
(1)若数列
为“
数列”,求数列
的通项公式;
(2)是否存在数列
既是“
数列”,也是“
数列”?若存在,求出符合条件的数列
的通项公式及对应的
k
的值;若不存在,请说明理由;
(3)若数列
为“
数列”,
,设
,证明:
.
同类题3
在用反证法证明“已知
,
,
,且
,则
,
,
中至少有一个大于
”时,假设应为( )
A.
,
,
中至多有一个大于
B.
,
,
全都小于
C.
,
,
中至少有两个大于
D.
,
,
均不大于
同类题4
若
,
,
,求证:
,
,
不可能同时大于
.
同类题5
(1)已知正数
满足
,求证:
;
(2)求证:1,
,3不可能是一个等差数列中的三项.
相关知识点
推理与证明
直接证明与间接证明
反证法
反证法证明
抽屉原理