刷题首页
题库
高中数学
题干
在某次测试后,一位老师从本班48同学中随机抽取6位同学,他们的语文、历史成绩如下表:
学生编号
1
2
3
4
5
6
语文成绩
60
70
74
90
94
110
历史成绩
58
63
75
79
81
88
(1)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;
(2)用上表数据画出散点图易发现历史成绩
与语文成绩
具有较强的线性相关关系,求
与
的线性回归方程(系数精确到0.1).
参考公式:回归直线方程是
,其中
,
上一题
下一题
0.99难度 解答题 更新时间:2017-05-25 01:44:16
答案(点此获取答案解析)
同类题1
为了分析某个高三学生的学习状态,对其下一个阶段的学习提出指导性建议,某老师现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该学生7次考试的成绩.
(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明.
(2)已知该学生的物理成绩y与数学成绩x是线性相关的,若该学生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该学生在学习数学、物理上的合理建议.
同类题2
某研究机构对某校高二文科学生的记忆力x和判断力y进行统计分析,得下表数据.
x
6
8
10
12
y
2
3
5
6
参考公式:
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
同类题3
某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动.活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为
元.若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这200万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取1000名,每名用户赠送1000元的红包.为了合理确定保费
的值,该手机厂商进行了问卷调查,统计后得到下表(其中
表示保费为
元时愿意购买该“手机碎屏险”的用户比例):
10
20
30
40
50
0.79
0.59
0.38
0.23
0.01
(1)根据上面的数据求出
关于
的回归直线方程;
(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为
.已知更换一次该型号手机屏幕的费用为2000元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于70万元,能否把保费
定为5元?
参考公式:回归方程
中斜率和截距的最小二乘估计分别为
,
.
参考数据:表中
的5个值从左到右分别记为
,
,
,
,
,相应的
值分别记为
,
,
,
,
,经计算有
,其中
,
.
同类题4
某工厂某产品近几年的产量统计如下表:
年份
2013
2014
2015
2016
2017
2018
年份代码
1
2
3
4
5
6
年产量
(万件)
6.6
6.7
7
7.1
7.2
7.4
(1)根据表中数据,求
关于
的线性回归方程
;
(2)若近几年该产品每千克的价格
(单位:元)与年产量
满足的函数关系式为
,且每年该产品都能售完.
①根据(1)中所建立的回归方程预测该地区
年该产品的产量;
②当
为何值时,销售额
最大?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
同类题5
房价收入比,是指住房价格与城市居民家庭年收入之比.幸福是人们对生活满意程度的一种主观感受.幸福指数是衡量人们这种感受具体程度的主观指标数.幸福指数由若干指标综合而成.如图是10所城市的“房价收入比”和“幸福指数”.
排名
城市
房价收入比
幸福指数
1
杭州
2.80
93.69
2
济南
2.32
91.56
3
合肥
2.21
85.48
4
苏州
2.0
88.17
5
成都
1.78
88.92
6
兰州
1.42
89.8
7
哈尔滨
1.39
92.35
8
昆明
1.30
87.21
9
海口
1.27
91.63
10
重庆
1.23
89.37
(1)填写以下列联表,并计算有没有
的把握认为幸福指数高(大于89)低与房价收入比高(大于1.7)低有关;
幸福指数89以上
幸福指数89及以下
合计
房价收入比1.7以上
房价收入比1.7及以下
合计
(2)已知城市宜居指数
,
表示房价收入比的排名序号,建立
关于
的线性回归方程,并估算排名11的城市的宜居指数.
参考公式和数据:
,其中
.
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,其中
,
,
,
,
,
.
相关知识点
计数原理与概率统计
统计案例
回归分析
线性回归