刷题首页
题库
高中数学
题干
某厂最近十年生产总量逐年上升,如表是部分统计数据:
年份
2008
2010
2012
2014
2016
生产总量(万吨)
(Ⅰ)利用所给数据求年生产总量与年份之间的回归直线方程
;
(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该厂2018年生产总量.
(回归直线的方程:
,其中
,
)
上一题
下一题
0.99难度 解答题 更新时间:2017-05-05 04:38:45
答案(点此获取答案解析)
同类题1
某城镇社区为了丰富辖区内广大居民的业余文化生活,创建了社区“文化丹青”大型活动场所,配备了各种文化娱乐活动所需要的设施,让广大居民健康生活、积极向上.社区最近四年内在“文化丹青”上的投资金额统计数据如表:(为了便于计算,把2015年简记为5,其余以此类推)
年份
(年)
5
6
7
8
投资金额
(万元)
15
17
21
27
(1)利用所给数据,求出投资金额
与年份
之间的回归直线方程
;
(2)预测该社区在2019年在“文化丹青”上的投资金额.
(附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.)
同类题2
根据如下样本数据:
3
5
7
9
6
3
2
得到回归方程
,则( )
A.变量
与
之间是函数关系
B.变量
与
线性正相关
C.线性回归直线经过上述各样本点
D.
同类题3
2015年一交警统计了某路段过往车辆的车速大小与发生的交通事故次数,得到如下表所示的数据:
车速x(km/h)
60
70
80
90
100
事故次数y
1
3
6
9
11
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
=
x+
;
(Ⅲ)试根据(Ⅱ)求出的线性回归方程,预测在2016年该路段路况及相关安全设施等不变的情况下,车速达到110km/h时,可能发生的交通事故次数.
(附:b=
,
=
-
,其中
,
为样本平均值)
同类题4
生物学家预言,21世纪将是细菌发电造福人类的时代.说起细菌发电,可以追溯到1910年,英国植物学家利用铂作为电极放进大肠杆菌的培养液里,成功地制造出世界上第一个细菌电池.然而各种细菌都需在最适生长温度的范围内生长.当外界温度明显高于最适生长温度,细菌被杀死;如果在低于细菌的最低生长温度时,细菌代谢活动受抑制.为了研究某种细菌繁殖的个数
是否与在一定范围内的温度
有关,现收集了该种细菌的6组观测数据如下表:
经计算得:
,
,线性回归模型的残差平方和
.其中
分别为观测数据中的温度与繁殖数,
.
参考数据:
,
,
(Ⅰ)求
关于
的线性回归方程
(精确到0.1);
(Ⅱ)若用非线性回归模型求得
关于
回归方程为
,且非线性回归模型的残差平方和
.
(ⅰ)用相关指数
说明哪种模型的拟合效果更好;
(ⅱ)用拟合效果好的模型预测温度为34℃时该种细菌的繁殖数(结果取整数).
附:一组数据
,其回归直线
的斜率和截距的最小二乘法估计为
,
;
相关指数
同类题5
某公司为确定下一年度投入某种产品的宜传费,需了解年宣传费对年销售量(单位:
t
)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费
x
(万元)和年销售量
y
(单位:
t
)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
x
(万元)
2
4
5
3
6
y
(单位:
t
)
2.5
4
4.5
3
6
(1)根据表中数据建立年销售量
y
关于年宣传费
x
的回归方程.
(2)已知这种产品的年利润
(万元)与
x
,
y
的关系为
根据(1)中的结果回答下列问题:
①当年宣传费为10万元时,预测该产品的年销售量及年利润;
②估计该产品的年利润与年宣传费的比值的最大值.
附:回归方程
中的斜率和截距的最小二乘估计公式分别为
.
参考数据:
.
相关知识点
计数原理与概率统计
统计
变量间的相关关系
回归直线方程
用回归直线方程对总体进行估计
求回归直线方程