刷题首页
题库
高中数学
题干
已知
是坐标原点,抛物线
:
的焦点为
,过
且斜率为1的直线
交抛物线
于
、
两点,
为抛物线
的准线上一点,且
.
(1)求
点的坐标;
(2)设与直线
垂直的直线与抛物线
交于
、
两点,过点
、
分别作抛物线
的切线
、
,设直线
与
交于点
,若
,求
外接圆的标准方程.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-28 11:12:10
答案(点此获取答案解析)
同类题1
平面内与两定点
,
连线的斜率之积等于非零常数
的点的轨迹,加上
、
两点所成的曲线
可以是圆、椭圆或双曲线,给出以下四个结论:①当
时,曲线
是一个圆;②当
时,曲线
的离心率为
;③当
时,曲线
的渐近线方程为
;④当曲线
的焦点坐标分别为
和
时,
的范围是
.其中正确的结论序号为_______.
同类题2
已知F是抛物线
的焦点,点M是抛物线上的定点,且
.
(1)求抛物线C的方程;
(2)直线AB与抛物线C交于不同两点
,直线
与AB平行,且与抛物线C相切,切点为N,试问△ABN的面积是否是定值.若是,求出这个定值;若不是,请说明理由.
同类题3
已知抛物线
:
,不过坐标原点
的直线
交于
,
两点.
(Ⅰ)若
,证明:直线
过定点;
(Ⅱ)设过
且与
相切的直线为
,过
且与
相切的直线为
.当
与
交于点
时,求
的方程.
同类题4
如图,
轴,点
在
的延长线上,且
.当点
在圆
上运动时,
(1)求点
的轨迹方程.
(2)过点
作直线
与点
的轨迹相交于
、
两点,使点
被弦
平分,求直线
的方程.
同类题5
如图,线段
的两个端点
、
分别在
轴、
轴上滑动,
,点
是线段
上一点,且
,点
随线段
的运动而变化.
(1)求点
的轨迹
的方程;
(2)过点
作直线
,与曲线
交于
、
两点,
是坐标原点,设
,是否存在这样的直线
,使四边形
的对角线相等(即
)?若存在,求出直线
的方程;若不存在,试说明理由.
相关知识点
平面解析几何
圆锥曲线
求抛物线的切线方程