刷题首页
题库
高中数学
题干
已知
为椭圆
上三个不同的点,
为坐标原点.
(1)若
,问:是否存在恒与直线
相切的圆?若存在,求出该圆的方程;若不存在,请说明理由;
(2)若
,求
的面积.
上一题
下一题
0.99难度 解答题 更新时间:2018-06-19 11:47:15
答案(点此获取答案解析)
同类题1
已知椭圆
的长轴长为4,离心率为
.
(1)求椭圆
的标准方程;
(2)过
作动直线
交椭圆
于
两点,
为平面上一点,直线
的斜率分别为
,且满足
,问
点是否在某定直线上运动,若存在,求出该直线方程;若不存在,请说明理由.
同类题2
已知
是右焦点为
的椭圆
:
上一动点,若
的最小值为
,椭圆的离心率为
.
(I)求椭圆
的方程;
(II)当
轴且点
在
轴上方时,设直线
与椭圆
交于不同的两点
,若
平分
,则直线
的斜率是否为定值?若是,求出这个定值;若不是,说明理由.
同类题3
已知椭圆
的左焦点为
,点
在椭圆
上且位于第一象限,
为坐标原点,若线段
的中点
满足
,则直线
的方程为( )
A.
B.
C.
D.
同类题4
已知椭圆
的离心率为
,左、右焦点分别为
、
,
是
上一点,
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)当过点
的动直线
与椭圆
相较于不同两点
,
时,在线段
上取点
,且
满足
,证明点
总在某定直线上,并求出该定直线.
同类题5
已知椭圆
过点
,且椭圆的离心率
.
(1)求椭圆的标淮方程;
(2)直线
过点
且与椭圆相交于
、
两点,椭圆的右顶点为
,试判断
是否能为直角.若能为直角,求出直线
的方程,若不行,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
求直线与椭圆的交点坐标
椭圆中三角形(四边形)的面积
椭圆中的定直线