刷题首页
题库
高中数学
题干
已知椭圆
的右焦点为
,离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于
两点,且以
为直径的圆经过原点
,求证:点
到直线
的距离为定值;
(3)在(2)的条件下,求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-21 09:52:06
答案(点此获取答案解析)
同类题1
(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=
,一条准线的方程是x=2
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:
=
+2
,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
,
问:是否存在定点F,使得|PF|与点P到直线l:x=2
的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.
同类题2
已知椭圆
C
:
(
a
>
b
>0)的一个顶点为
A
(2,0),离心率为
.直线
y
=
k
(
x
-1)与椭圆
C
交于不同的两点
M
,
N
.
(1)求椭圆
C
的方程;
(2)当△
AMN
的面积为
时,求
k
的值.
同类题3
在平面直角坐标系
中,已知椭圆
的离心率为
,且右焦点
到左准线的距离为5.动直线
与椭圆交于
,
两点(
在第一象限).
(1)求椭圆
的标准方程;
(2)设
,
,且
,求当
面积最大时,直线
的方程.
同类题4
如图,
、
是离心率为
的椭圆
:
的左、右焦点,过
作
轴的垂线交椭圆
所得弦长为
,设
、
是椭圆
上的两个动点,线段
的中垂线与椭圆
交于
、
两点,线段
的中点
的横坐标为1.
(1)求椭圆
的方程;
(2)求
的取值范围.
同类题5
已知椭圆
经过点
离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)经过椭圆左焦点
的直线(不经过点
且不与
轴重合)与椭圆交于
两点,与直线
:
交于点
,记直线
的斜率分别为
.则是否存在常数
,使得向量
共线?若存在求出
的值;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题