刷题首页
题库
高中数学
题干
已知椭圆
的焦点与双曲线
的焦点重合,过椭圆C的右顶点B任作一条直线
,交抛物线
于A,B两点,且
,
(1)试求椭圆C的方程;
(2)过椭圆
的右焦点且垂直于
轴的直线交椭圆
于
两点,M,N是椭圆
上位于直线
两侧的两点.若
,求证:直线MN的斜率
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2018-11-29 12:33:31
答案(点此获取答案解析)
同类题1
已知椭圆
过点
,其离心率
.
(1)求椭圆
的方程;
(2)若直线
不经过点
,且与椭圆
相交于
两点(
、
不重合),若直线
与直线
的斜率之积为
.
(ⅰ)证明:
过定点,并求出定点坐标;
(ⅱ)求
的面积的最大值.
同类题2
已知椭圆
的方程为
,椭圆
的离心率正好是双曲线
的离心率的倒数,椭圆
的短轴长等于抛物线
上一点
到抛物线焦点
的距离.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
的两个交点为
,
两点,已知圆
:
与
轴的交点分别为
,
(点
在
轴的正半轴),且直线
与圆
相切,求
的面积与
的面积乘积的最大值.
同类题3
已知椭圆
:
的上顶点为
,右顶点为
,直线
与圆
相切于点
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设椭圆
的左、右焦点分别为
、
,过
且斜率存在的直线
与椭圆
相交于
,
两点,且
,求直线
的方程.
同类题4
已知椭圆
的左焦点为
F
,短轴的两个端点分别为
A
,
B
,且
,
为等边三角形.
(1)求椭圆
C
的方程;
(2)如图,点
M
在椭圆
C
上且位于第一象限内,它关于坐标原点
O
的对称点为
N
;过点
M
作
x
轴的垂线,垂足为
H
,直线
与椭圆
C
交于另一点
J
,若
,试求以线段
为直径的圆的方程;
(3)已知
是过点
A
的两条互相垂直的直线,直线
与圆
相交于
P
,
Q
两点,直线
与椭圆
C
交于另一点
R
,求
面积最大值时,直线
的方程.
同类题5
已知椭圆
的右焦点
与抛物线
焦点重合,且椭圆的离心率为
,过
轴正半轴一点
且斜率为
的直线
交椭圆于
两点.
(1)求椭圆的标准方程;
(2)是否存在实数
使以线段
为直径的圆经过点
,若存在,求出实数
的值;若不存在说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题