刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,短半轴长为1.
(1)求椭圆
的方程;
(2)设椭圆
的短轴端点分别为
,点
是椭圆
上异于点
的一动点,直线
分别与直线
于
两点,以线段
为直径作圆
.
①当点
在
轴左侧时,求圆
半径的最小值;
②问:是否存在一个圆心在
轴上的定圆与圆
相切?若存在,指出该定圆的圆心和半径,并证明你的结论;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2016-07-05 02:49:37
答案(点此获取答案解析)
同类题1
设椭圆C:
过点(0,4),离心率为
(Ⅰ)求C的方程;
(Ⅱ)求过点(3,0)且斜率为
的直线被C所截线段的中点坐标.
同类题2
已知椭圆
,离心率
.左焦点为
,过点
且与
轴垂直的直线被椭圆截得的线段长为3.
(1)求该椭圆的方程;
(2)过椭圆的左焦点的任意一条直线
与椭圆交于
两点,在
轴上是否存在定点
使得
轴平分
,若存在,求出定点坐标,若不存在,说明理由.
同类题3
在平面直角坐标系
中,已知椭圆
的离心率为
,且椭圆
的短轴恰好是圆
的一条直径.
(1)求椭圆
的方程
(2)设
分别是椭圆
的左,右顶点,点
是椭圆
上不同于
的任意点,是否存在直线
,使直线
交直线
于点
,且满足
,若存在,求实数
的值;若不存在,请说明理由.
同类题4
已知椭圆
,
为椭圆的左右焦点,过右焦点垂直于
轴的直线交椭圆于
两点,若
,且椭圆离心率
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知
为椭圆上两个不同点,
为
中点,
关于原点和
轴的对称点分别是
,直线
在
轴的截距为
,直线
在
轴的截距为
,试证明:
为定值.
同类题5
已知椭圆
的离心率为
,过顶点
的直线
与椭圆
相交于两点
.
(1)求椭圆
的方程;
(2)若点
在椭圆上且满足
,求直线
的斜率
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中存在定点满足某条件问题