刷题首页
题库
高中数学
题干
已知椭圆
的右焦点为
,上顶点为
,直线
的斜率为
,且原点到直线
的距离为
.
(1)求椭圆
的标准方程;
(2)若不经过点
的直线
与椭圆
交于
两点,且与圆
相切.试探究
的周长是否为定值,若是,求出定值;若不是,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-17 05:18:27
答案(点此获取答案解析)
同类题1
已知椭圆的短轴长为2
,焦点坐标分别是(-1,0)和(1,0).
(1)求这个椭圆的标准方程;
(2)如果直线
y
=
x
+
m
与这个椭圆交于不同的两点,求
m
的取值范围.
同类题2
已知椭圆
(
)的半焦距为
,原点
到经过两点
,
的直线的距离为
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)如图,
是圆
的一条直径,若椭圆
经过
,
两点,求椭圆
的方程.
同类题3
设
、
分别是椭圆C:
的左、右焦点,
,直线1过
且垂直于x轴,交椭圆C于A、B两点,连接A、B、
,所组成的三角形为等边三角形。
(1)求椭圆C的方程;
(2)过右焦点
的直线m与椭圆C相交于M、N两点,试问:椭圆C上是否存在点P,使
成立?若存在,求出点P的坐标;若不存在,说明理由.
同类题4
设椭圆
的左、右焦点分别为
,
,下顶点为
,
为坐标原点,点
到直线
的距离为
,
为等腰直角三角形.
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交于
,
两点,若直线
与直线
的斜率之和为
,证明:直线
恒过定点,并求出该定点的坐标.
同类题5
已知椭圆
的左、右焦点分别为
、
且经过点
(1)求椭圆
的方程;
(2)直线
与椭圆
相交于
两点,
点为椭圆
上的动点,且
请问
的面积是否存在最小值?若存在,求出此时直线
的方程;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求椭圆中的弦长