刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,直线
与圆
相切.
(1)求椭圆
的方程;
(2)设直线
与椭圆
的交点为
,求弦长
.
上一题
下一题
0.99难度 解答题 更新时间:2014-03-05 08:54:15
答案(点此获取答案解析)
同类题1
已知椭圆
的标准方程为
,该椭圆经过点
,且离心率为
.
(1)求椭圆的标准方程;
(2)过椭圆
长轴上一点
作两条互相垂直的弦
.若弦
的中点分别为
,证明:直线
恒过定点.
同类题2
已知椭圆
过点
,且离心率
.
(1)求椭圆
的方程;
(2)设直
交椭圆
于
两点,判断点
与以线段
为直径的圆的位置关系,并说明理由.
同类题3
已知椭圆
E
的中心为坐标原点,离心率为
,
E
的右焦点与抛物线
的焦点
重合,
是
C
的准线与
E
的两个交点,则
( )
A.
B.
C.
D.
同类题4
已知椭圆
的离心率
,过焦点且垂直于
x
轴的直线被椭圆截得的线段长为3.
(1)求椭圆的方程;
(2)动直线
与椭圆交于
A
,
B
两点,在平面上是否存在定点
P
,使得当直线
PA
与直线
PB
的斜率均存在时,斜率之和是与
无关的常数?若存在,求出所有满足条件的定点
P
的坐标;若不存在,请说明理由.
同类题5
已知椭圆
的右焦点与抛物线
的焦点重合,且椭圆
的离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
是椭圆
的右顶点,过
点作两条直线分别与椭圆
交于另一点
,若直线
的斜率之积为
,求证:直线
恒过一个定点,并求出这个定点的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
求椭圆中的弦长