刷题首页
题库
高中数学
题干
( 本小题满分12分)
已知点
是离心率为
的椭圆
:
上的一点.斜率为
的直线
交椭圆
于
、
两点,且
、
、
三点不重合.
(Ⅰ)求椭圆
的方程;
(Ⅱ)
的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
(Ⅲ)求证:直线
、
的斜率之和为定值.
上一题
下一题
0.99难度 解答题 更新时间:2015-09-25 03:13:29
答案(点此获取答案解析)
同类题1
(理)已知
分别是椭圆
(其中
)的左、右焦点,椭圆
过点
且与抛物线
有一个公共的焦点.
(1)求椭圆
的方程;
(2)过椭圆
的右焦点且斜率为1的直线
与椭圆交于
、
两点,求线段
的长度.
同类题2
已知椭圆:
的左、右点分别为
点
在椭圆上,且
(1)求椭圆
的方程;
(2)过点(1,0)作斜率为
的直线
交椭圆
于M、N两点,若
求直线
的方程;
(3)点P、Q为椭圆上的两个动点,
为坐标原点,若直线
的斜率之积为
求证:
为定值.
同类题3
已知椭圆
过点
,且离心率
。
(1)求椭圆方程;
(2)若直线
与椭圆交于不同的两点
,且线段
的垂直平分线过定点
,求
的取值范围。
同类题4
已知椭圆
:
的左、右焦点分别为
,右顶点为
,且
过点
,圆
是以线段
为直径的圆,经过点
且倾斜角为
的直线与圆
相切.
(1)求椭圆
及圆
的方程;
(2)是否存在直线
,使得直线
与圆
相切,与椭圆
交于
两点,且满足
?若存在,请求出直线
的方程,若不存在,请说明理由.
同类题5
已知椭圆
(
)的一个焦点坐标为
,点
在
上.
(1)求
的方程;
(2)直线
不经过原点
,且不平行于坐标轴,
与
有两个交点
、
,线段
中点为
,证明:直线
的斜率与直线
的斜率乘积为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定点、定值