刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切,
分别是椭圆的左右两个顶点,
为椭圆
上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若
与
均不重合,设直线
与
的斜率分别为
,证明:
为定值;
(Ⅲ)
为过
且垂直于
轴的直线上的点,若
,求点
的轨迹方程,并说明轨迹是什么曲线.
上一题
下一题
0.99难度 解答题 更新时间:2012-03-20 10:05:20
答案(点此获取答案解析)
同类题1
设椭圆
的离心率,
右焦点到直线
的距离
为坐标原点.
(Ⅰ)求椭圆
的方程;
(II)过点
作两条互相垂直的射线,与椭圆
分别交于
两点,证明:点
到直线
的距离为定值,并求弦
长度的最小值.
同类题2
(本小题满分12分)如图,曲线
由上半椭圆
和部分抛物线
连接而成,
的公共点为
,其中
的离心率为
.
(Ⅰ)求
的值;
(Ⅱ)过点
的直线
与
分别交于
(均异于点
),若
,求直线
的方程.
同类题3
已知椭圆
的右焦点为
,离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于
两点,且以
为直径的圆经过原点
,求证:点
到直线
的距离为定值;
(3)在(2)的条件下,求
面积的最大值.
同类题4
已知椭圆
,离心率
,点
在椭圆上.
(1)求椭圆
的标准方程;
(2)设点
是椭圆
上一点,左顶点为
,上顶点为
,直线
与
轴交于点
,直线
与
轴交于点
,求证:
为定值.
同类题5
已知椭圆
:
(
)的一个焦点
与抛物线
:
的焦点重合,且离心率为
.
(1)求椭圆
的标准方程;
(2)过焦点
的直线
与抛物线
交于
,
两点,与椭圆
交于
,
两点,满足
,求直线
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题