刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切,
分别是椭圆的左右两个顶点,
为椭圆
上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若
与
均不重合,设直线
与
的斜率分别为
,证明:
为定值;
(Ⅲ)
为过
且垂直于
轴的直线上的点,若
,求点
的轨迹方程,并说明轨迹是什么曲线.
上一题
下一题
0.99难度 解答题 更新时间:2012-03-20 10:05:20
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,直线
与椭圆
交于
两点,且线段
的中点为
,则直线
的斜率为( )
A.
B.
C.
D.
同类题2
已知椭圆的中心在原点,焦点在
轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点
.
(1)求椭圆的方程;
(2)求
的取值范围;
(3)若直线
不过点
,求证:直线
的斜率互为相反数.
同类题3
如图,中心在坐标原点,焦点分别在
轴和
轴上的椭圆
,
都过点
,且椭圆
与
的离心率均为
.
(Ⅰ)求椭圆
与椭圆
的标准方程;
(Ⅱ)过点
引两条斜率分别为
的直线分别交
,
于点P,Q,当
时,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
同类题4
(本题满分13分)已知椭圆
的离心率为
,长轴
,短轴
,四边形
的面积为
.
(1)求椭圆的方程;
过椭圆的右焦点
的直线
交椭圆于
,直线
.
①证明:
,并求直线
的方程; ②证明:以
为直径的圆过右焦点
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题