刷题首页
题库
高中数学
题干
(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=
,一条准线的方程是x=2
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:
=
+2
,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
,
问:是否存在定点F,使得|PF|与点P到直线l:x=2
的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2014-06-05 06:03:38
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,点
在椭圆
上,焦点为
,圆
O
的直径为
.
(1)求椭圆
C
及圆
O
的标准方程;
(2)设直线
l
与圆
O
相切于第一象限内的点
P
,且直线
l
与椭圆
C
交于
两点.记
的面积为
,证明:
.
同类题2
已知椭圆
:
两个焦点之间的距离为2,且其离心率为
.
(Ⅰ) 求椭圆
的标准方程;
(Ⅱ) 若
为椭圆
的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满足
,求
外接圆的方程.
同类题3
设椭图
的左焦点为
,右焦点为
,上顶点为
B
,离心率为
,
是坐标原点,且
(1)求椭圆
C
的方程;
(2)已知过点
的直线
与椭圆
C
的两交点为
M
,
N
,若
,求直线
的方程.
同类题4
已知椭圆
的离心率为
,过右焦点
且斜率为
的直线与
相交于
两点.若
,则
A.1
B.
C.
D.2
同类题5
已知椭圆
的中心在原点,焦点在
轴上,它的一个顶点恰好是抛物线
的焦点,离心率等于
.
(1)求椭圆
的标准方程;
(2)过椭圆
的右焦点
作直线
交椭圆
于
两点,交
轴于
点,若
,求证
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
根据直线与椭圆的位置关系求参数或范围